FACULTY OF SCIENCES

FACULTY LIST

OFFICERS OF THE FACULTY

Salem, Elie A.
Bashour, Tali’
Karam, Nadim
Nahas, George
Najjar, Michel
Attieh, Jihad
Moubayed, Walid
Ayoub, Olga

FACULTY STAFF

Aoun, Amal	Laboratory Assistant
Atieh, Elie	Laboratory Assistant
Atieh Waed	Faculty Secretary
Bazzi, Samer	Research Assistant
Chammas, Michel	Research Assistant
Elias, Sally	Executive Secretary
Esber, Michella	Laboratory Assistant
Khoury, Bilal	Research Assistant
Khoury (El), Takla	Research Assistant
Malek Georges	Laboratory Assistant
Moussa, Dima	Research Assistant
Nasr, Adele	Faculty Secretary
Ouaygen, Lama	Laboratory Assistant
Saba, Jimmy	Laboratory Assistant
Younis, Mira	Research Assistant
Zakhem, Michel	Laboratory Assistant

FACULTY MEMBERS

Abbas, Abdel-Wahed	Ph.D., Computer Science,
	Queen Mary College, University of London, UK. Ph.D. Biochemistry,
Abdel-Massih, Roula	University of Glasgow, UK.
Abdul-Aziz, Abdul-Rahman	Ph.D., Mathematics,
	University of Sydney, Australia.
Achkar (El), Eliane	Ph.D., Molecular Genetics,
	Université Paris VI, Pierre \& Marie Curie, France.
Aouad, Samer	Ph.D., Physical Chemistry,
	ULCO, France.
Attieh, Jihad	Ph.D., Plant Physiology \& Biochemistry,
	Université de Montréal, Canada.

Bakkour, Youssef	Ph.D., Organic Chemistry,
	Université Lille II, France.
Bechara, Ghassan	Ph.D., Chemistry,
	Université Paul Sabatier, France.
Bitar, Amine	Ph.D., Computer Science,
	University of Bedford, U.K.
Chami, Riad	M.S., Computer Science,
	University of Technology, Australia.
Debs, Esperance	Ph.D., Food Microbiology,
	Université de Technologie de Compiègne, France.
Debs (El), Hamid	Ph.D., Biomedical Engineering,
	Université de Technologie de Compiègne, France.
Dargham, Joumana	Ph.D., Computer Science,
	Université de Montréal, Canada.
Dib Nehme, Micheline	M.S., Mathematics,
	University of Texas-Arlington, USA.
Dick, Manal	Ph.D., Computer Science,
	Université Nantes, France.
Echtay, Karim	Ph.D., Biochemistry,
	Ludwig Maximillians University, Germany.
Farah, Farah	Ph.D., Mathematics,
	Université Savoie, France.
Greije, Hanna	Ph.D., Statistical Mathematics,
	Université Pierre et Marie Curie, France.
Habib, Sami	Ph.D., Chemistry,
	Université Pierre \& Marie Curie, France.
Hanna, Robert	Emeritus Professor, Chemistry,
Issa, Carmen	M.S., Computer Science,
	University of Balamand, Lebanon.
Itani, Omar	Ph.D., Physiology,
	University of Minnisotta, USA.
Jadayel, Roula	M.S., Mathematics,
	American University of Beirut, Lebanon.
Jreige, Jocelyne	M.Sc., Computer Science,
	University of Balamand, Lebanon.
Karam, Marc	Ph.D., Biology,
	Surrey University, UK.
Karam, Walid	Ph.D., Computer Science,
	Telecom ParisTech, France.
Kassab, Rima	Ph.D., Organic Chemistry,
	Université Claude-Bernard, France.
Khoury, Antoine	Ph.D., Mathematics,
	Université Paul Sabatier, France.
Makdissy, Gladys	Ph.D., Water Chemistry,
	Université Poitiers, France.
Masri, Rania	Ph.D., Forestry,
	North Carolina State University, USA.

Melki, Antoine	Ph.D., Computer Science, University of Patras, Greece.
Mitri, George	Ph.D., Forest Management, University of Trieste, Italy.
Nader, Manal	Ph.D., Biology and Aquaculture, Hokkaido University, Japan.
Nakat (El), Hanna	Ph.D., Physical Chemistry, University of New South Wales, Australia.
Nasr, Elie	Ph.D., Mathematics, Université Bordeaux, France.
Obeid, Pierre	Ph.D., Chemistry, University of Patras, Greece.
Rastikian, Karabet	Ph.D., Chemical Engineering, Université de Technologie de Compiègne, France.
Salem, Ghada	Ph.D., Mathematics, Université Paul Sabatier, France.
Sbat, Mira	Ph.D, Mathematics, Université de Strasbourg, France.
Sleiman, Mayada	Ph.D., Mathematics, Université Savoie, France.
Tannous, Tony	Ph.D., Science, University of Sydney, Australia.
Yaacoub, Guitta	D.E.A., Plant Production, Lebanese University, Lebanon.
Yammine, Paolo	Ph.D., Organic Chemistry, Université Paris XIII, France.
Zakhem, Imad	Ph.D., Computer Science, Université de Reims Champagne-Ardenne, France

PROGRAMS OF STUDY

The Faculty of Sciences includes the following departments:

- Biology
- Chemistry
- Computer Science
- Environmental Sciences
- Mathematics
- Physics

The sequence of study proceeds from an education in both science fundamentals and humanities toward training designed to lead to the student's mastery of principles and arts central to science. The Faculty of Sciences offers the following undergraduate degrees:

Major	Years	Degree
Biology	3	BS Teaching Diploma
Chemistry	$3+1$	BS Teaching Diploma
Computer Science (Information Systems, Software Engineering or Networking \& Communication)	$3+1$	BS
	$3+1$	Teaching Diploma
Environmental Sciences	3	BS
Mathematics	3	BS Teaching Diploma
Physics	$3+1$	BS Teaching Diploma

UNDERGRADUATE PROGRAM

1. ADMISSION REQUIREMENTS

Refer to General Section.

2. ACADEMIC RULES AND REGULATIONS

Refer to General Section.

A. CHANGE OF MAJOR

To change a current major within the Faculty of Sciences or to transfer from any other Faculty of the University of Balamand to the Faculty of Sciences, a student must qualify for a clear standing status in the new department. Probationary acceptance may be granted to transferring students, who do not satisfy the above condition, upon the recommendation of the new department and approval of the Dean.

B. CREDIT LOAD

The full-time load ranges between 12 and 18 credits, with a recommended average of 15-16 credits per regular semester. A higher credit load is only considered under special circumstances (e.g. graduation) and requires the approval of the Dean. A maximum of 10 credits is acceptable for the Summer semester.

C. REGISTRATION IN GRADUATE COURSES

Undergraduate students enrolled in their final semester may register for up to two graduate courses if judged appropriate by the Department and approved by the Dean. Grades of such courses do not count towards their undergraduate average. Enrollment in graduate courses does not imply in any way an automatic admission to the corresponding Master program.

3. LABORATORY CHARGES

A. SUPPLIES

Each student taking laboratory subjects must furnish the necessary notebooks, blank forms, lab coat, and similar supplies at his/her expense. For regular students taking prescribed laboratory work, no charge will be made for normal amounts of expendable material used in connection with the laboratory subject. Expendable materials are those that are necessarily consumed or rendered unfit for further use by the normal conduct of a laboratory test. If an excessive amount of expendable material is required because of carelessness on the part of the student, the cost of the additional material will be charged to the student or group responsible.

B. DAMAGES

Students will be charged for damage to instruments caused by neglect. The amount of the charge will be the
actual cost of repair, and if the damage results in total loss of the apparatus, adjustment will be made in light of the condition of the instruments. Where there is danger of costly damage, an instructor should be requested to check the equipment's set up. When a group does laboratory work, charges for breakage will be divided among the members of the group concerned. The amount of the charge will be stated immediately or as soon as it can be determined.

4. SUPPORT LABORATORIES

The laboratories that students will attend in support of the theoretical subjects include:

- Biology Labs.
- Chemistry Labs.
- Database Lab.
- Mobile Lab.
- Multimedia Lab.
- Networking Lab.
- Physics Lab.
- Statistics Lab.
- UNIX Lab.

TEACHING DIPLOMA IN APPLIED SCIENCES:

This degree is offered to students having a Bachelor of Science from the Faculty and are planning to become teachers of intermediate or high school levels.
The diploma counts 27 credits distributed among the following courses:

Course Code	Course Title	Credit
EDUC 213	Fundamentals of Education: History and Methods	3
EDUC 216	Test and Measurement	3
EDUC 220	Educational Psychology	3
EDUC 227	Sociology of Education	3
EDUC 250A	Assisted Learning	3
PSYC 214	Adolescence Development	3
PRAC 201	Practicum I	3
PRAC 202	Practicum II	3

In addition, one specialized course (3 Credits) of the following : EDUC 251 Teaching Mathematics in the Elementary School, EDUC 264 Teaching Applied Sciences in the Elementary School, EDUC 280 Teaching of Computer.
For course descriptions, refer to the Department of Education.

PREMEDICAL PROGRAM

The Premedical Program is offered to students who intend to enter the Faculty of Medicine \& Medical Sciences and gives them the opportunity to apply for the Medical College Admission Test (MCAT) after successfully
taking a minimum of 36 credits distributed as follows:

Biology
Chemistry

Humanities and Social Sciences
Physics
a minimum of 8 credits: normally BIOL 201, 202, 203, 204
a minimum of 14 credits, including 7 credits of Organic Chemistry: Normally CHEM 202, 203, 222, 242, 244, 245
a minimum of 6 credits
a minimum of 8 credits: normally PHYS 211, 212, 213, 214

NB: English communication skills are required but not credited.

DEPARTMENT OF BIOLOGY

UNDERGRADUATE PROGRAM

The primary mandate of the Department of Biology is to provide excellence in teaching at the undergraduate and graduate levels. The Department offers a comprehensive program, which exposes students to the full range of biological sciences. Our undergraduate three-year curriculum introduces students to modern studies in general, molecular, cell, and environmental biology. It also emphasizes active, hands-on experience with modern technology. Small class sizes with an emphasis on laboratories and tutorials foster ongoing, productive interactions between students and faculty.

Graduates in Biology may go on to professional programs in medicine, medical sciences, biotechnology, or science education. They may also enter the workforce directly, as research assistants, data analysts and members of marketing teams in the pharmaceutical and health industries. Still others may choose to pursue graduate studies in biological sciences, with the aim of following a career in academia or industry.

The Department of Biology offers a Bachelor of Science Degree (B.Sc.) in Biology for students who have successfully undertaken a minimum of $\mathbf{9 6}$ credits of required courses provided that they satisfy all other graduation requirements set by the University.

Students must complete the following:

I. 44 credits of Major Courses

Thirty three credits (33 cr) constituted of the following courses: BIOL 201, 202, 203, 204, 207, 213, 214, 245, 246, 251, 261, 262, 283, 284, 285.
Plus eleven credits (11 cr) selected from: BIOL 208, 221, 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 235, 236, 241, 242, 243, 244, 247, 249, 263, 264, 265, 266, 271, 272, 286, 287, 291, 292, 293, 294.

II. 25 credits of Major-Required Courses

CHEM 202, 203, 240*, 245, CSIS 273, MATH 203, 242, PHYS 211, 212, 213, 214
*Premedical students must replace CHEM 240 with CHEM $242 \underline{\underline{\&}}$ CHEM 244 , which subsequently are counted in the Major Average.

III. 18 credits of University-Required Courses

ENGL 203, 204, CVSQ 201, 202, 203, 204.

IV. 09 credits of Free Electives**

**A Premedical Student, having substituted CHEM 240 with CHEM 242 \& CHEM 244 (6 cr), must also take CHEM 222 (Analytical Chemistry) or an equivalent course as an elective. Such student may only choose ONE 3-credit course as a free elective.

MINOR IN BIOLOGY

The minor in Biology allows students to gain valuable information in the field of biological sciences while completing their primary field of study. It also allows students to take advanced Biology coursework related to the main discipline. The Faculty of Sciences offers a Minor in Biology for students who have successfully completed a minimum of $\mathbf{1 8}$ credits of Biology courses as follows:

Code	Course Title	Credit
BIOL 201	General Biology I	3
BIOL 202	General Biology I Lab.	1
BIOL 203	General Biology II	3
BIOL 204	General Biology II Lab.	1

Any three courses (9 credits) and one lab (1 credit) picked from the following list*:

Code

Course Title

Credit

BIOL 207 Ecology
3
BIOL 208 Ecology Lab 1
BIOL 213 Cell Biology 3
BIOL 214 Cell Biology Lab 1
BIOL 225 Animal Physiology 3
BIOL 226 Animal Physiology Lab 1
BIOL 229 Immunobiology 3
BIOL 235 Reproductive Biology \& In Vitro Fertilization 3
BIOL 236 Reproductive Biology \& In Vitro Fertilization Lab 1
BIOL 245 Plant Physiology 3
BIOL 246 Plant Physiology Lab 1
BIOL 251 Principles of Biochemistry 3
BIOL 261 Microbiology 3
BIOL 262 Microbiology Lab 1
BIOL 263 Nutrition 3
BIOL 264 Nutrition Lab 1
BIOL 283 Genetics 3
BIOL 284 Genetics Lab 1
BIOL 285 Molecular Biology 3
BIOL 286 Molecular Biology Lab 1
BIOL 287 Biotechnology \& Recombinant DNA 3
BIOL 291 Special Topics in Biology 3
BIOL 292 Seminars in Biology 1
BIOL 293 Bioethics 1
BIOL 294 Training in Fertility Unit 2

* If carefully chosen, these courses may present a minor with a specific concentration.

SEMESTER 1

| Course Code | Course Title | Credit |
| :--- | :--- | :--- | :---: |
| BIOL 201 | General Biology I | 3 |
| BIOL 202 | General Biology I Lab. | 1 |
| CHEM 202 | Basic Chemistry | 3 |
| CHEM 203 | Basic Chemistry Lab. | 1 |
| CSIS 273 | Personal Computing for Applied Sciences | 3 |
| ENGL 203 | English Communication Skills III | 3 |
| MATH 203 | Mathematics for Applied Sciences | $\mathbf{3}$ |
| | | $\mathbf{1 7}$ |

SEMESTER 2

| Course Code | Course Title | Credit |
| :--- | :--- | :--- | :---: |
| BIOL 203 | General Biology II | 3 |
| BIOL 204 | General Biology II Lab. | 1 |
| CHEM 240 | Basic Organic Chemistry* | 3 |
| ENGL 204 | English Communication Skills IV | 3 |
| MATH 242 | Statistics for Applied Sciences | 3 |
| PHYS 211 | Fundamentals of Physics I | 3 |
| PHYS 212 | Fundamentals of Physics I Lab. | 1 |
| Total | | $\mathbf{1 7}$ |

SEMESTER 3

Course Code

BIOL 283
BIOL 284
Course Title

CHEM 245
CVSQ 201 Early Formation of Civilization Credit
Genetics
3

PHYS 213 Fundamentals of Physics II1PHYS 214Fundamentals of Physics II Lab.3
Free Elective 3
Total15

SEMESTER 4

Course Code

BIOL 213
BIOL 214
Title

BIOL 251 Principles of Biochemistry 3

Credit

3

CVSQ 202 The Religious Experience 3
BIOL 285 Molecular Biology 3
Major Elective 3
Total

SEMESTER 5

Course Code	Course Title	Credit
BIOL 207	General Ecology	3
BIOL 261	Microbiology	3
BIOL 262	Microbiology Lab.	1
CVSQ 203	Introduction to Modernity	3
	Major Elective	3
	Major Elective Lab.	1
	Free Elective	3
Total		17
SEMESTER 6		
Course Code	Course Title	Credit
BIOL 245	Plant Physiology	3
BIOL 246	Plant Physiology Lab.	1
CVSQ 204	Contemporary Challenges in the Arab World	3
	Major Elective	3
	Major Elective Lab.	1
	Free Elective	3
Total		14
Total credits		96

*A Premedical student must replace CHEM 240 with CHEM 242 \& CHEM 244 (6 cr), which subsequently are counted in the Major Average.

Electives in the Department of Biology

Code	Course Title	Credit
BIOL 208	General Ecology Lab*	1
BIOL 221	Zoology	3
BIOL 222	Zoology Lab	1
BIOL 223	Comparative Vertebrate Anatomy	3
BIOL 224	Comparative Vertebrate Anatomy Lab	1
BIOL 225	Animal Physiology*	3
BIOL 226	Animal Physiology Lab*	1
BIOL 227	Neurophysiology	3
BIOL 229	Immunobiology*	3
BIOL 230	Immunobiology Lab	1
BIOL 231	Developmental Biology*	3
BIOL 232	Developmental Biology Lab	1
BIOL 233	Endocrinology	3
BIOL 235	Reproductive Biology \& In Vitro Fertilization	3
BIOL 236	Reproductive Biology \& In Vitro Fertilization Lab	1
BIOL 241	Botany	3
BIOL 242	Botany Lab	1
BIOL 243	Plant Anatomy	3
BIOL 244	Plant Anatomy Lab	1
BIOL 247	Economic Plant Biology	3
BIOL 249	Plant Secondary Metabolism	3
BIOL 263	Nutrition*	3
BIOL 264	Nutrition Lab	1
BIOL 265	Parasitology \& Virology	3
BIOL 266	Parasitology \& Virology Lab	1
BIOL 271	Principles of Soil Science	3
BIOL 272	Principles of Soil Science Lab	1
BIOL 286	Molecular Biology Lab*	1
BIOL 287	Biotechnology \& Recombinant DNA*	3
BIOL 291	Special Topics in Biology	3
BIOL 292	Seminars in Biology*	1
BIOL 293	Bioethics	1
BIOL 294	Training in Fertility Unit	2
* Electives in Biology that are offered presently.		

Concentration: Reproductive Biology / Embryology

The Departement of Biology offers within its Bachelor degree (B.Sc) a concentration in "Reproductive Biology". This option allows Biology students to take specialized courses in Developmental,

Reproductive, and Molecular Biology. It also emphasizes hands-on experience within the hospital fertility center, allowing them to develop a concentration in Assisted Procreation. This degree option is earned through the completion of the following courses within the general 96 cr required for B.Sc. degree in Biology.

Code

BIOL 225 Animal Physiology

Credit

BIOL 226
BIOL 231 Developmental Biology 3
BILO 235 Reproductive Biology \& in vitro Fertilization 3
BIOL 236 Reproductive Biology \& in vitro Fertilization Lab 1
BIOL 293 Bioethics 1
BIOL 294 Training in Fertility Unit 2
***This credit may also be earned either by covering BIOL 224 (Comparative Vertebrate Anatomy Laboratory), BIOL 286 (Molecular Biology Laboratory), BIOL 236 (Reproductive Biology \& In Vitro FertilizationLaboratory), BIOL 232 (Developmental Biology Laboratory) or BIOL 292 (Seminars in Biology).

COURSE DESCRIPTIONS

BIOL 101 INTRODUCTION TO BIOLOGY I
3.0: 3 cr. E

This course is an introduction to the basic concepts of Genetics and Evolution, for students undertaking the Freshman Program.

BIOL 102 INTRODUCTION TO BIOLOGY I LABORATORY

0.3: 1 cr. E

A set of experiments that introduce students to the world of Biology, including use of the microscope, introduction to DNA isolation and manipulation, and the safe use of biology lab equipment.

BIOL 103 INTRODUCTION TO BIOLOGY II

3.0: $3 \mathrm{cr} . \mathrm{E}$

This course complements BIOL 101 and introduces the students to the basic concepts of Immunology and Metabolism.
Pre-requisite: BIOL 101.

BIOL 104 INTRODUCTION TO BIOLOGY II LABORATORY

0.3: 1 cr. E

A set of experiments that introduce students to metabolism, including anatomy of the nervous system, neurophysiology, testing for glycaemia, blood cells, blood typing, and an introduction to immunological techniques.
Pre-requisite: BIOL 102.

BIOL 201 GENERAL BIOLOGY I

0.3: 1 cr. E

Principles of biology, including the cellular basis of life; evolution; energy transfer through living organisms and introduction to Systematics.

BIOL 202 GENERAL BIOLOGY I LABORATORY

0.3: 1 cr. E

Required laboratory includes techniques such as microscopy, biochemical analysis, and use of the scientific method.
Co-requisite: BIOL 201.

BIOL 203 GENERAL BIOLOGY II

3.0: 3 cr. E

An introduction to the study of anatomy, physiology and classification of plants and animals, which includes structure/function relationships, reproduction, development and control systems.
organ systems. This is an ideal bridging course for individuals coming from all backgrounds. This course is not offered to students majoring in Biology and cannot be counted as a Premedical course.
Pre-requisite: BIOL 201

BIOL 204 GENERAL BIOLOGY II LABORATORY
0.3: $1 \mathrm{cr} . \mathrm{E}$

Laboratory includes cytology, histology, and dissection.
Co-requisite: BIOL 203.

BIOL 205 PRINCIPLES OF HUMAN BIOLOGY

3.0: 3 cr. E

Principles of Human Biology is designed to provide a basic overview of human biology, starting from the most elementary fabrics of life and moving up to the organ systems that make the sophisticated living marvel, the human body. The material of this course is intended to those who are in need of an encompassing view of the human body without necessarily going into the fine details that govern the functions of cells, organs and organ systems. This is an ideal bridging course for individuals coming from all backgrounds. This course is not offered to students majoring in Biology and cannot be counted as a Premedical course.

BIOL 207 GENERAL ECOLOGY

3.0: $3 \mathrm{cr} . \mathrm{E}$

Origin and evolution of the biosphere, introduction to climates, ecosystems and biomes. A study of the interrelations of organisms and their environments. Principles of growth, regulation, distribution, structure and energetics of populations and communities are explored.
Co-requisite: BIOL 203.
BIOL 208 GENERAL ECOLOGY LABORATORY
0.3: 1 cr. E

Field and laboratory exercises illustrating concepts of general ecology.
Co-requisite: BIOL 207.
BIOL 213 CELL BIOLOGY
3.0: 3 cr E

A general description of the structure and function of cellular organelles and cell components, with emphasis
on the interactions between cells and their environment.
Pre-requisite: BIOL 203.

BIOL 214 CELL BIOLOGY LABORATORY 0.3: 1 cr . E

Laboratory experiments include structure/function relationship in cell organelles. Introduction to basic techniques used in the field of cell biology.
Co-requisite: BIOL 213.

BIOL 221 ZOOLOGY

3.0: 3 cr. E

A general introduction to protists and animals without backbones. Emphasis placed on evolutionary and ecological relationships that make an understanding and appreciation of this diverse group of animals possible. A study of the vertebrates with regard to their systematics, ecology, and behavior.
Pre-requisite: BIOL 203.

BIOL 222 ZOOLOGY LABORATORY

0.3: 1 cr E

Exercises designed to introduce students to the 95 percent of all animals without a backbone. Identification of representative vertebrates through examination of specimens.
Co-requisite: BIOL 221.
BIOL 223 COMPARATIVE VERTEBRATE ANATOMY
3.0: 3 cr. E

A comparative study of the functional adaptations, which caused structural changes in different chordate animals based on specific examples.
Pre-requisite: BIOL 203.

BIOL 224 COMPARATIVE VERTEBRATE ANATOMY LABORATORY

0.3: 1 cr E

A practical comparison of the anatomy of different vertebrates ranging from simplest forms to the most complex. Co-requisite: BIOL 223.

BIOL 225 ANIMAL PHYSIOLOGY

3.0: 3 cr E

A study of the functions of living things with emphasis on the chemical and physical properties of protoplasm, the conversion of energy and matter through cell respiration and synthesis, the transport of materials across membranes, cell excitability and contraction, and regulatory processes. A comparative study of physiological systems; nutrition, circulation, respiration, osmoregulation and excretion, nervous and endocrine coordination. Pre-requisite: BIOL 213.

BIOL 226 ANIMAL PHYSIOLOGY LABORATORY
0.3: 1 cr. E

Experimental investigation of various functions of cells by isolation and characterization of subcellular parts and examination of cellular processes such as membrane transport and cell excitability. Experimental examination of the various vertebrate organ systems and how different animals deal with physiological problems.
Co-requisite: BIOL 225.
BIOL 227 NEUROPHYSIOLOGY
3.0: 3 cr. E

An introduction to the nervous system with an organizational study of neural functions from molecular to organ level.
Pre-requisite: BIOL 203.

A general description of the immune system, its components, the different types of immune responses, the defense mechanisms; description of immunological techniques and immune diseases.
Pre-requisite: BIOL 213.

BIOL 230 IMMUNOBIOLOGY LABORATORY

0.3: 1 cr. E

This course discusses subjects related to the mammalian immune system along with the application of various techniques used in the field of immunology such as leukocyte count, western blotting, immunoprecipitation, and ELISA.
Co-requisite: BIOL 229.

BIOL 231 DEVELOPMENTAL BIOLOGY

3.0: 3 cr . E

Description of the major events of the embryonic development in many organisms. Study of the molecular mechanisms that control this development.
Pre-requisite: BIOL 203.

BIOL 232 DEVELOPMENTAL BIOLOGY LABORATORY

0.3: 1 cr E

Thorough practical investigation of the different developmental stages in a number of animals belonging to different classes.
Co-requisite: BIOL 231.

BIOL 233 ENDOCRINOLOGY

3.0: 3 cr . E

This course deals with hormones, their structure, synthesis, secretion, role, and regulation. It deals also with related diseases and disorders.
Co-requisite: BIOL 213.
BIOL 235 REPRODUCTIVE BIOLOGY\& in vitro FERTILIZATION
3.0: 3 cr . E

This course discussessubject mattersrelated toreproductive biology, embryology, andbioethicsrelatedtothistopic. Pre-requisite: BIOL 225.

BIOL 236 REPRODUCTIVE BIOLOGY\& in vitro FERTILIZATION LAB

0.3: 1 cr . E

Practical investigation of the reproductive system and embryonic development in animal systems
Co-requisites: BIOL 235.

BIOL 241 BOTANY

3.0: 3 cr . E

An evolutionary survey of the plant kingdom: Classification, morphology and anatomy, adaptations for survival, and representative types and life cycles from the simplest to the most advanced groups.
Pre-requisite: BIOL 203.

BIOL 242 BOTANY LABORATORY

0.3: 1 cr . E

Field and laboratory exercises to study plants ranging from the simplest to the most advanced groups. Identification of structural features of lower and higher plants.
Co-requisite: BIOL 241.

BIOL 243 PLANT ANATOMY

3.0: 3 cr .

Origins, evolution and differentiation of plant tissues and organs with emphasis on the anatomy of vascular plants.
Pre-requisite: BIOL 203.

BIOL 244 PLANT ANATOMY LABORATORY

Preparation and examination of different fixed plant tissues using light microscopy. Practical study of structurefunction relationships.
Co-requisite: BIOL 243.

BIOL 245 PLANT PHYSIOLOGY

3.0: 3 cr. E

Selected aspects of the chemical and physical processes occurring in plants, including water relations and transpiration, photosynthesis, respiration, translocation of sugars, the assimilation of nitrogen and sulfur, mineral nutrition, growth and development, phytohormones and the metabolism of lipids and natural products.
Pre-requisite: BIOL 203.
BIOL 246 PLANT PHYSIOLOGY LABORATORY
0.3: 1 cr . E

Introduction to experimental techniques used to study the biochemistry and physiology of plant growth.
Co-requisite: BIOL 245.
BIOL 247 ECONOMIC PLANT BIOLOGY
3.0: 3 cr . E

The importance of plants and their products in human life. Evolution and use of plant products in food and medicine with an overview of their potential use in biotechnology.
Pre-requisite: BIOL 203.
BIOL 249 PLANT SECONDARY METABOLISM
3.0: 3 cr . E

In depth description of plant natural products, their nature, metabolism and role in plant interactions with other living organisms.
Pre-requisite: BIOL 245 .
BIOL 251 PRINCIPLES OF BIOCHEMISTRY
3.0: 3 cr . E

The course is designed to introduce the basic concepts of biochemistry. Coverage includes a thorough description of the biochemical framework: amino acids, proteins, enzymes, lipids, carbohydrates \& nucleic acids. In addition, the course provides an overview of bioenergetics and metabolism of carbohydrates, lipids and amino acids.
Pre-requisite: BIOL 203; Co-requisite CHEM 244 or CHEM 240.

BIOL 261 MICROBIOLOGY

3.0: 3 cr. E

Structure and behavior of bacteria as well as selected fungi, algae, protozoa, and viruses; microbial genetics; microbial ecology and biotechnology; principles of immunity and disease.
Pre-requisite: BIOL 203.
BIOL 262 MICROBIOLOGY LABORATORY
0.3: 1 cr . E

Basic laboratory techniques for isolating, examining, and identifying bacteria, fungi, and viruses; elementary immunological techniques.
Co-requisite: BIOL 261.

BIOL 263 NUTRITION

3.0: 3 cr . E

Study of basic human nutritional needs in energy, carbohydrates, fats, proteins, vitamins, and minerals with special emphasis on nutritional needs during various developmental stages in life (infant, adult, old age, and specific circumstances).
Pre-requisite: BIOL 251.

An investigation into the constituents of the major nutrients in the human diet. The laboratory includes testing of foods for composition and contamination.
Co-requisite: BIOL 263.
BIOL 265 PARASITOLOGY \& VIROLOGY
3.0: 3 cr. E

General description of animal parasites: classification, morphology, life cycles and physiology.
Pre-requisite: BIOL 261.

BIOL 266 PARASITOLOGY \& VIROLOGY LABORATORY

0.3: 1 cr. E

Practical application to the course material including diagnosis, identification of the most widespread types of parasites.
Co-requisite: BIOL 265.
BIOL 271 PRINCIPLES OF SOIL SCIENCE
3.0: 3 cr. E

Introduction to soil science with an emphasis on soil genesis and development. Overview of the physical and mechanical characteristics. Plant, soil, water relations, microbial activities, and organic matter will be discussed.

Pre-requisites: BIOL 203, CHEM 202.
BIOL 272 PRINCIPLES OF SOIL SCIENCE LABORATORY
0.3: 1 cr. E

Examination of structure and texture of soils, determination of biological, physical and chemical characteristics of various soil samples.
Co-requisite: BIOL 271.
BIOL 283 GENETICS
3.0: 3 cr. E

Organization, expression and evolution of hereditary elements in Prokaryotes and Eukaryotes; principles of the classical Mendelian Genetics and extension to population analysis; principles of molecular genetics: DNA structure and organization in chromosomes and genes, mutations and gene expression.
Pre-requisite: BIOL 203.
BIOL 284 GENETICS LABORATORY
0.3: 1 cr . E

Applications of genetic principles are reviewed through demonstrations, problem solving, and research. Experimental techniques employed in the study of genetics utilizing plants, animals, and microorganisms. Co-requisite: BIOL 283.

BIOL 285 MOLECULAR BIOLOGY

3.0: 3 cr. E

Molecular mechanisms involved in the expression of genetic information, the control of macromolecular synthesis, the aggregation of macromolecules into DNA-protein complexes, membranes, chromosomes and cell organelles, and an introduction to recombinant DNA technology.
Pre-requisite: BIOL 283.
BIOL 286 MOLECULAR BIOLOGY LABORATORY
0.3: 1 cr. E

Required laboratory includes an introduction to protein purification techniques, gene cloning, and recombinant DNA technology.
Co-requisite: BIOL 285.
BIOL 287 BIOTECHNOLOGY \& RECOMBINANT DNA
3.0: 3 cr. E

A course which deals with recombinant DNA technology and its uses in the various fields of Biology such as
plant and animal amelioration, and bioremediation.
Pre-requisite: BIOL 283.
BIOL 291 SPECIAL TOPICS IN BIOLOGY
3.0: 3 cr. E

Course discussing various topics of Biology with special contemporary importance. Subjects may include advances in technical and theoretical knowledge as well as discussions of specific topics like cancer, cloning, theoretical biology, etc.
Pre-requisite: BIOL 203.

BIOL 292 SEMINARS IN BIOLOGY

0.3: 1 cr. E

Special course discussing topics of high interest presented by invited faculty or by students.

BIOL 293 BIOETHICS

0.3: 1 cr. E

A course discussing various bioethical and moral issues related to artificial reproductive technologies, stem cell controversy or other medical related issues.
Pre-requisite: BIOL 203.
BIOL 294 TRAINING IN FERTILITY UNIT
2.0: 2 cr. E

Training in the hospital or lab on the various stages of preperation of gametes and the procedure of in vitro fertilization.

Pre-requisite: BIOL 236.
CVSQ 201, 202, 203, 204
Refer to the Civilization Sequence Program.
CHEM 202, 203, 222, 240, 242, 244, 245
Refer to the Department of Chemistry.
CSIS 273
Refer to the Department of Computer Science.
ENGL 203, 204
Refer to the Division of English Language \& Literature.
MATH 203, 242.
Refer to the Department of Mathematics.
PHYS 211, 212, 213, 214
Refer to the Department of Physics.

DEPARTMENT OF CHEMISTRY

BACHELOR'S DEGREE

The Faculty of Sciences offers a Bachelor of Science Degree in Chemistry for students who have successfully undertaken a minimum of 91 credits of required courses provided that they satisfy the standards set by the University and the Faculty. Students must complete the following:

I- 38 credits of Major Courses

CHEM 202, 203, 222, 223, 224, 242, 244, 245, 246, 247, 260, 262, 263, 264, 270, 272.

II- $\mathbf{1 7}$ credits of Major Required Courses

CSIS 273, MATH 203, 272, PHYS 211, 212, 213, 214.

III- 18 credits of University Required Courses

ENGL 203, 204, CVSQ 201, 202, 203, 204.

IV-18 credits of Electives

PRE-MED TRACK

The Bachelor's Degree Curriculum in Chemistry includes all courses required to prepare students for the MCAT. These courses are:

Biology*	A minimum of 8 credits BIOL 201, 202, 203, 204
Chemistry	A minimum of 13 credits including 7 credits of organic chemistry CHEM 202, 203, 222, 242, 244, 245
Humanities and Social Sciences	A minimum of 6 credits Chosen from CVSQ and / or English courses
Physics	A minimum of 8 credits PHYS 211, 212, 213, 214

* The Bachelor's Degree Curriculum in Chemistry includes 18 credits of free electives which allow students to meet the Biology course requirement for the MCAT examination without the need for extra credits.

MINOR IN CHEMISTRY

The Faculty of Sciences offers a Minor in Chemistry for students who have successfully completed a minimum of 18 credits of chemistry courses as follows:

Code	Course Title	Credit
CHEM 202	Basic Chemistry	3
CHEM 203	Basic Chemistry Lab	1
CHEM 222	Analytical Chemistry I	3
CHEM 240**	Basic Organic Chemistry	3
CHEM 245	Organic Chemistry Lab I	1
CHEM 260	Statistical Mechanics \& Thermodynamics	3
CHEM 246	Applied Molecular Spectroscopy	3
And a selection of one laboratory course from:		
CHEM 247	Organic Chemistry Lab II	1
CHEM 223	Analytical Chemistry Lab	1
CHEM 263	Physical Chemistry Lab	1

* A student who is already registered for CHEM 242 and CHEM 244 to meet "pre-medical" requirements need not register for CHEM 240 to meet " Minor in Chemistry " requirements.

BACHELOR'S DEGREE

SEMESTER 1

Course Code	Course Title	Credit
CHEM 202	Basic Chemistry	3
CHEM 203	Basic Chemistry Lab	1
CSIS 273	Personal Computing for Applied Sciences	3
ENGL 203	English Communication Skills III	3
MATH 203	Mathematics for Applied Sciences	3
	Elective	3

Total 16

SEMESTER 2

Course Code	Course Title	Credit
CHEM 222	Analytical Chemistry I	3
CHEM 242	Organic Chemistry I	3
ENGL 204	English Communication Skills IV (or Equivalent)	3
MATH 272	Differential Equations for Applied Sciences	3
PHYS 211	Fundamentals of Physics I	3
PHYS 212	Fundamentals of Physics I Lab	1
Total		$\mathbf{1 6}$

SEMESTER 3

Course Code	Course Title	Credit
CHEM 244	Organic Chemistry II	3
CHEM 245	Organic Chemistry Lab I	1
CHEM 260	Statistical Mechanics and Thermodynamics	3
CVSQ 201	Early Formation of Civilization	3
PHYS 213	Fundamentals of Physics II	3
PHYS 214	Fundamentals of Physics II Lab	1
	Elective	3
Total		$\mathbf{1 7}$

SEMESTER 4

Course Code	Course Title	Credit
CHEM 224	Analytical Chemistry II	3
CHEM 246	Applied Molecular Spectroscopy	3
CHEM 247	Organic Chemistry Lab II	1
CHEM 262	Physical and Chemical Kinetics	3
CHEM 270	Inorganic Chemistry I	3
CVSQ 202	The Religious Experience.	3

SEMESTER 5

Course Code	Course Title	Credit
CHEM 223	Analytical Chemistry Lab	1
CHEM 272	Inorganic Chemistry II	3
CVSQ 203	Introduction to Modernity Electives	3
		6
Total		$\mathbf{1 3}$
SEMESTER 6		Credit
Course Code	Course Title	1
CHEM 263	Physical Chemistry Lab	3
CHEM 264	Quantum Theory and Structure of Matter	3
CVSQ 204	Contemporary Challenges in the Arab World	6
	Electives	$\mathbf{1 3}$
Total		$\mathbf{1 3}$
Total credits		$\mathbf{9 1}$

CHEMISTRY ELECTIVE COURSES

I- Within the Department

Course Code

CHEM 280

Course Title

CHEM 282 Food Chemistry
CHEM
Chiogeochemistry 284
CHEM 286 Polymer Chemistry 3
CHEM 288 Methods of Analysis 3
CHEM 290 Industrial Chemistry 3
CHEM 292 Environmental Chemistry 3
CHEM 294 Green Chemistry 3
CHEM 296 Water and Soil Chemistry 3
CHEM 298 Special Topics in Chemistry 3

COURSE DESCRIPTIONS

CHEM 001 SOP CHEMISTRY

3.0: 3 cr . E

This is a basic chemistry course for students in the Special Orientation Program (SOP). SOP students normally study Chemistry in Arabic. It is the aim of this course to make the students familiar with the English terminology. Accordingly, the course reviews the topics usually taken at the Third Secondary Level such as: Atomic theory, stoichiometry, oxidation \& reduction, ideal gas laws, quantum chemistry, chemical equilibrium and an introduction to organic chemistry.

CHEM 100 INTRODUCTION TO CHEMISTRY I

3.0: 3 cr E

Basic Chemistry Level I for Freshman students in the Scientific section. An elective for Freshman students in the Literary section. Accordingly, the course covers the following topics: Atomic theory of matter, types of reactions, concepts of acids and bases, molecular and ionic equations, oxidation-reduction reactions, calculations with chemical formulas and equations, stoichiometry, empirical gas laws, the ideal gas law, introduction to quantum chemistry.

CHEM 101 INTRODUCTION TO CHEMISTRY I LABORATORY

0.3: 1 cr E

The aim of this course is to introduce and familiarize Freshman students with the laboratory environment. Students will learn how to safely handle chemical reagents, glassware and basic apparatus by carrying out experiments such as precipitation, electrical conductivity of solutions, acid-base titration, melting point determination, distillation, etc.
Co-requisite: CHEM 100.

CHEM 102 INTRODUCTION TO CHEMISTRY II

3.0: 3 cr E

Basic Chemistry Level II for Freshman students in the Scientific section. Accordingly, the course covers the following topics: types of chemical bonds, electronegativity and polarity, rate of a chemical reaction, half life, chemical equilibrium, Le-Chaterlier's principle, Equilibrium in aqueous solutions (acids, bases, buffer), solubility, introduction to organic chemistry: hydrocarbons, hybridization, alkanes and cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, reactions of hydrocarbons, organic compounds containing oxygen. Reaction of oxygen containing organic compounds, organic compounds containing nitrogen, and organic polymers.
Pre-requisite: CHEM 100.

In this laboratory course, Freshman students will carry out experiments such as precipitation, electrical conductivity of solutions, acid-base titration, melting point determination, distillation, etc.
Co-requisite: CHEM 102.

CHEM 110 INTRODUCTION TO FOOD CHEMISTRY AND NUTRITION

3.0: 3 cr. E

An introductory course for the exploration of the structure, properties, and chemical composition of food systems and the changes they undergo during processing and under storage. Basic food chemistry provides the student with knowledge of the three primary food constituents: carbohydrates, lipids and proteins and some of the main reactions between them. The Caloric concept of different food components is also discussed.

CHEM 150 INTRODUCTION TO THE SCIENCE OF COSMETICS

3.0: 3 cr. E

This is an enjoyable course for all students regardless of their educational formation or background. Cosmetics and toiletries are products of our every day life, ranging from the use of toothpastes, hair gels, deodorants, facial soaps, shampoos, hair conditioners and many others. Understanding how these products are made and how they work will enable you to decide which product to buy and which serves simply as a commercial tool. The student will also become familiar with basic perfume manufacturing process.
At the end of the course, each pupil will "manufacture" his/her own product they chose. The list includes shampoos, shaving creams, toothpastes, hand creams etc.

CHEM 202 BASIC CHEMISTRY

3.0: 3 cr. E

Origin of the atomic theory. Determination of atomic weights and molecular formulae. The mole concept. The chemical equation. Acid-base and oxidation-reduction concepts. Properties of gases and gas laws. Liquids and solutions. Types of solutions: ideal and non-ideal solutions. Chemical equilibrium. Ionic equilibrium in aqueous solutions. Solubility. Quantum theory of the atom. Electronic structure of atoms. The chemical bond: ionic and covalent bonds. Hybridization. The Valence-Shell Electron-Pair Repulsion (VSEPR) Model.
Pre-requisite: CHEM 102.

CHEM 203 BASIC CHEMISTRY LABORATORY

0.3: 1 cr. E

The aim of this introductory laboratory course is to introduce the students to the basic techniques and equipment of common use in a chemistry lab.
Co-requisite: CHEM 202.

CHEM 208 BASIC CHEMISTRY FOR PUBLIC HEALTH (PDHP 202)

3.0:3 cr. E

This course introduces Public Health students to the basic principles of chemistry. The course discusses basic general and organic chemistry, water chemistry, atmospheric chemistry, Inorganic and Organic pollutants as well as hazardous waste.
(Students who have already completed CHEM 202 may be granted equivalence)

CHEM 209 BASIC CHEMISTRYLABORATORY FOR PUBLIC HEALTH (PDHP 203)

0.3:1 cr. E

This is a laboratory course which introduces public health students to experiments in basic and applied chemistry.
(Students who have already completed CHEM 203 may be granted equivalence)

CHEM 222 ANALYTICAL CHEMISTRY I

3.0: 3 cr. E

Errors in chemical analysis. Statistical evaluation of analytical data. Gravimetric methods of analysis. Titrimetric methods of analysis. Aqueous solution chemistry. Activities and activity coefficients. Equilibrium
calculations. Precipitation titration. Neutralization titration. Complex acid-base systems. Complex-formation titration. Electrochemistry. Applications of oxidation-reduction Titrations. Kinetics.
Pre-requisite: CHEM 202.
CHEM 223 ANALYTICAL CHEMISTRY LAB
0.3: 1 cr. E

The experiments are designed to familiarize the students with the manipulation of modern analytical instruments. Pre-requisite: CHEM 203 \& 222.

CHEM 224 ANALYTICAL CHEMISTRY II

3.0: 3 cr. E

Potentiometric, Electrogravimetric and coulorimetric Methods of analysis. Voltametry. Introduction to spectroscopic methods of analysis. Instruments for optical spectroscopy. Molecular absorption spectroscopy. Molecular fluorescence spectroscopy. Atomic spectroscopy: UV \& IR. Kinetic methods of analysis. Chromatography: Gas-Liquid and HPLC.
Pre-requisite: CHEM 222.

CHEM 240 BASIC ORGANIC CHEMISTRY

3.0: 3 cr . E

This course outlines the combined theories and fundamental concepts of organic chemistry, including structure, shape, IUPAC nomenclature, stereoisomerism, optical activity, absolute configuration and properties of the following groups: alkanes, alkenes, alkynes and aromatic hydrocarbons; compounds containing functional groups such as halogen, hydroxyl, carbonyl, carboxylic acids and amines. Emphasis is put on important synthesis methods and reagents, basic reaction mechanisms, important naturally-occurring and synthetic organic compounds, and physical methods used in structure determination.
Students cannot receive credit for both CHEM 240 and CHEM 242. Students cannot receive credit for both CHEM 240 and CHEM 244. Chemistry major students will not receive credits for CHEM 240.
Pre-requisite: CHEM 202.

CHEM 242 ORGANIC CHEMISTRY I

3.0: 3 cr. E

Atomic and molecular orbitals; hybridization and bonding between two carbon atoms. Electronegativity and Resonance. Inductive effect. Stereochemistry: Optical and geometrical isomerism. Substitution, elimination and addition reaction. Properties of alkane, alkene and alkyne. Chemistry of the aromatic hydrocarbons. Students cannot receive credit for both CHEM 240 and CHEM 242.
Pre-requisite: CHEM 202.

CHEM 244 ORGANIC CHEMISTRY II

3.0: 3 cr. E

Study of the main functional groups: alcohols, phenols, ethers and epoxides, aldehydes and ketones, carboxylic acids and derivatives, amine and amides. Spectroscopy and structures. Carbanions. Aryl halides.
Students cannot receive credit for both CHEM 240 and CHEM 244.
Pre-requisite: CHEM 242.

CHEM 245 ORGANIC CHEMISTRY LAB I

0.3: 1 cr. E

Experiments are intended to introduce students to basic techniques in organic chemistry, synthesis and extraction, chromatography and identification of functional groups.
Pre-requisite: CHEM 202, $203 \& 242$.
Co-requisite: CHEM 244. or
Pre-requisite: CHEM 202, $203 \& 240$.

Principles and instrumentation of Ultraviolet, Visible, Infrared, Raman Spectroscopy, Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry. Analysis of IR, UV, NMR and mass spectra.
Pre-requisite: CHEM 244 or 240.

CHEM 247 ORGANIC CHEMISTRY LAB II

0.3: $1 \mathrm{cr} . \mathrm{E}$

Synthesis and structure determination of complex organic compounds. The aim of this course is to familiarize the students with advanced techniques used in organic chemistry laboratories.
Co-requisite: CHEM 245.

CHEM 260 STATISTICAL MECHANICS AND THERMODYNAMICS

3.0: 3 cr. E

The properties of gases. The First Law of thermodynamics: concepts and machinery. The Second Law of thermodynamics: concepts and machinery. Change of state. Equilibrium electrochemistry.
Pre-requisite: CHEM 202.

CHEM 262 PHYSICAL AND CHEMICAL KINETICS

3.0: 3 cr. E

The kinetic theory of gases. Ion transport and molecular diffusion. Rates of chemical reactions. Kinetics of complex reactions. Molecular reaction dynamics. Processes at solid surfaces. Dynamic electrochemistry.
Pre-requisite: CHEM 202.

CHEM 263 PHYSICAL CHEMISTRY LAB

0.3: 1 cr. E

Kinetic properties of reacting systems. Rate of a reaction. Application of electronic spectroscopy to vibrational, rotational and electronic properties of simple molecules.
Pre-requisite: CHEM 203, 260.
Co-requisite: CHEM 262 or 264.

CHEM 264 QUANTUM THEORY AND STRUCTURE OF MATTER

3.0: 3 cr. E

Quantum theory: introduction, principles, techniques and applications. Atomic structure and atomic spectra. Molecular structure. Rotational and vibrational spectra. Electronic transitions. Magnetic resonance. Diffraction techniques. Statistical thermodynamics. Electrical and magnetic properties of molecules.
Pre-requisite: CHEM 202.

CHEM 270 INORGANIC CHEMISTRY I

3.0: 3 cr. E

Bohr's nuclear model of the atom. Waves mechanics and the Schrödinger equation. Energy levels and Lines spectra. Chemical bonds. Acids and bases in inorganic reactions. Study of some regular types of elements.
Pre-requisite: CHEM 202.

CHEM 272 INORGANIC CHEMISTRY II

3.0: 3 cr. E

Theory of chemical bonds in coordination compounds; isomerism and stability. Organometallic Chemistry, Review of experimental techniques used in structure determination.
Pre-requisite: CHEM 202.

CHEM 273 INORGANIC CHEMISTRY LAB

0.3: 1 cr. E

Preparation of some inorganic compounds and study of their properties.
Pre-requisite: CHEM 270.
Co-requisite: CHEM 272.

This course provides an outline of the toxicological, occupational hygiene and environmental aspects of chemical hazards and exposures. Metals, solvents, toxic and irritant gases, pesticides, carcinogens, hazardous wastes and dioxins will also be discussed.

CHEM 282 FOOD CHEMISTRY

3.0: 3 cr . E

Chemical composition of food; their physical and sensory properties. Preservation of food.
Pre-requisite: CHEM 202.

CHEM 284 BIOGEOCHEMISTRY

3.0: 3 cr. E

An interdisciplinary science course encompassing chemical reactions in the atmosphere, oceans, soil and sediment, and living organisms. It is a study about effects exerted by living systems on quality of the environment, impact on the global system, and the link existing between the atmosphere, the ocean and land.
Pre-requisite: CHEM 202.

CHEM 286 POLYMER CHEMISTRY

3.0: 3 cr. E

Basics of polymer chemistry. Importance of polymers to our life. Stoichiometry of flexible chain molecules. Some microscopic features of bulk polymers. Methods for molecular characterization of polymers. Step and chain polymerization reactions-mechanisms and kinetics. Investigation onto co-polymerization strategy. Different polymerization methods.
Co-requisite: CHEM $270 \& 272$.

CHEM 288 SAMPLING \& METHODS OF ANALYSIS

3.0: 3 cr. E

This course is a combination of class and laboratory work; theory and application. It dwells on the principles of chemistry underlying the various methods and procedures. It prepares students for professional career in human and animal nutrition, industry and environmental sciences, as they learn how to collect, treat, store and digest samples, and how to run elemental analysis on the digest. It is designed to allow each student to obtain "hands-on" experience with the primary instrumentation available to chemists working in academia, industry, and government research.
Co-requisite: CHEM 222.

CHEM 290 INDUSTRIAL CHEMISTRY

3.0: 3 cr. E

Topics include different applications of organic and inorganic materials: glass, cement, ceramics, detergents, adhesives, fibers, biomaterials, electrical and electronic applications.

CHEM 292 ENVIRONMENTAL CHEMISTRY

3.0: 3 cr. E

Physics and chemistry of the ozone layer, catalytic processes; the ozone hole; urban ozone; acid rain, indoor and outdoor air pollution; mechanism of the greenhouse effect; climate-modifying effects of aerosols; toxic organic chemicals; pollution and purification of water; modern waste water and air purification techniques; toxic heavy metals; municipal wastes; soils and sediments; hazardous wastes; renewable energy.
Pre-requisite: CHEM 202.

CHEM 293 ENVIRONMENTAL CHEMISTRY LAB

0.3: 1 cr. E

This lab would provide students with basic skills needed for environmental chemistry, with a focus on the extraction and analytical method development to study the mechanisms of environmental fate, transport, and removal of pollutants.
Pre-requisites: CHEM 202, 203.

CHEM 294 GREEN CHEMISTRY

3.0: 3 cr. E

Principles and concepts of green chemistry; sustainable development, atom economy, reducing toxicity; waste production and problems; costs and waste minimization techniques; measuring environmental performance; environmental management, eco-labels and legislation; catalysis and green chemistry; organic solvents and volatile organic compounds; solvent-free systems; alternative solvents; emerging greener technologies; industrial case studies; society and sustainability.
Pre-requisite CHEM 292.

CHEM 296 WATER AND SOIL CHEMISTRY

3.0: 3 cr. E

Concepts in aquatic chemistry; chemical reactions and chemical equilibrium; combining chemical reactions; chemical potentials; adsorptions reactions; soil composition; ion exchange; soil acidity and buffering; mineral weathering and formation; oxidation-reduction reactions in soils; salt-affected and swelling soils; effects of salt-degraded soils on plants; availability and mobility of toxic elements in soils; organic pollutants in soils.
Pre-requisite CHEM 202.

CHEM 298 SPECIAL TOPICS IN CHEMISTRY

CVSQ 201, 202, 203, 204
Refer to the Civilization Sequence Program.

CSIS 273

Refer to the Department of Computer Science.
ENGL 203, 204
Refer to the Division of English Language \& Literature.
MATH 203, 272
Refer to the Department of Mathematics.
PHYS 211, 212, 213, 214
Refer to the Department of Physics.

DEPARTMENT OF COMPUTER SCIENCE

The Department of Computer Science provides a fundamental education to prepare students for positions in industry, government, education, or commerce, or to pursue graduate study. It offers the following degrees:

- BS in Computer Science with 2 options:
*Software Engineering
*Information Systems
- BS in Computer Science with Teaching Diploma

BACHELOR'S DEGREE in COMPUTER SCIENCE

Option SOFTWARE ENGINEERING

Program Features

Software Engineering is the discipline of developing and maintaining software systems that behave reliably and efficiently, are affordable to develop and maintain, and satisfy all the requirements that customers have defined for them. This is achieved with an integration of the Mathematics principles and Computer Science with the Engineering practices.

Learning outcomes

Graduates are expected to:

- Effectively apply knowledge of programming, algorithms, data structures, and software engineering to the development of software systems
- Communicate technical concepts effectively in both written documents and oral presentations
- Design and analyze software at all levels and make informed, sound, software design decisions
- Understand the social and ethical issues that arise in their work and deal with them professionally
- Understand the importance of all phases of the software lifecycle, with emphasis on the need to plan for change and continuously vie to improve the software process
- Work effectively in a software development team and with other professionals
- Appreciate the need for lifelong learning and adapt to rapid technological changes
- Be able to analyze, design, verify, validate, implement, apply and maintain software systems.

Career Opportunities

Software Engineering graduates excel as software developers and can quickly become experts at developing large scale software, working in teams and producing robust products that meet customer needs. They are prepared to work in a diverse marketplace and find opportunities in a wide variety of careers in IT, business, education, government and the non-governmemtal sectors.

BACHELOR'S DEGREE in COMPUTER SCIENCE Option INFORMATION SYSTEMS

Program Features

The Information Systems option combines mastery of management processes and a thorough knowledge of Information Technology, offered in a dynamic framework, a multidisciplinary approach and state-of-the-art laboratories.

Learning Outcomes

Specific objectives of the Information Systems option are to produce graduates who can:

- Analyze, design, implement, and test a solution to real world problems, including appreciating the value of efficient design created to meet clearly developed requirements
- Write technical documents such as specifications, design and use manuals in appropriate formats
- Orally present deliverables related to their specialization
- Blend their Software Engineering abilities with skills specific to Management to solve problems in Business
- Have a basic understanding of information science and business and their linkages to key technologies
- Have an enthusiasm for the educational process and for professional practices
- Work in interdisciplinary groups consisting of non-technical and technical members.

Career Opportunities

Information Technology is used practically in all fields of administration, from small businesses to large corporations and from governmental and non-governmental organizations to private institutions, such as hospitals, schools, universities, etc.

MINOR IN COMPUTER SCIENCE

A non Computer Science student wishing to minor in Computer Science must successfully complete the following courses: CSIS 200, CSIS 201, CSIS 270, CSIS 222, CSIS 204, CSIS 232 or CSIS 251.

BACHELOR'S DEGREE in COMPUTER SCIENCE

Option SOFTWARE ENGINEERING

SEMESTER 1

Course Code
CSIS 200
ENGL 203
MATH 200
MATH 211
ACCT 202

Total

Credit
3
English Communication Skills III 3
Calculus I 3
Linear Algebra I 3
Survey of Accounting \& Finance 3

15

SEMESTER 2

Course Code		Course Title
CSIS 201		Programming Methodology
CSIS 270	Databases	3
CSIS 222	Networking Principles and Design	3
MATH 246	Probability	3
ENGL 204	English Communication Skills IV	3
		3
Total		$\mathbf{1 5}$
SEMESTER 3		Credit
Course Code	Course Title	3
CVSQ 201	Early Formation of Civilization	3
CSIS 204	Object Oriented Programming	3
CSIS 210	Computer Organization \& Assembly Language	3
CSIS 271	Database Technologies	3
MATH 230	Numerical Analysis	3
		Elective

SEMESTER 5

Course Code

CVSQ 203
CSIS 276
CSIS 221
CSIS 250
CSIS 279

Course Title

Credit

Introduction to Modernity 3
Systems Analysis and Design 3
Operating Systems 3
Computer Graphics 3
Advances in Computer Science

SEMESTER 6

Course Code	Course Title	Credit
CVSQ 204	Contemporary Challenges in the Arab World	3
CSIS 278	Software Engineering and Quality Assurance	3
CSIS 260	Introduction to Artificial Intelligence	3
CSIS 290	Senior Project	3
	Elective	3
Total		$\mathbf{1 5}$
Total credits		$\mathbf{9 6}$

Elective Courses

Free electives.

BACHELOR'S DEGREE in COMPUTER SCIENCE

Option INFORMATION SYSTEMS

SEMESTER 1

Course Code	Course Title	Credit
ACCT 202	Survey of Accounting and Finance	3
CSIS 200	Introduction to Computing	3
CSIS 274	End User Computing	3
ENGL 203	English Communication Skills III	3
MATH 201	Mathematics for Computation	4

Total 16

SEMESTER 2

Course Code	Course Title	Credit
	Programming Methodology	3
CSIS 270	Databases	3
MATH 240	Probability and Statistics	4
CSIS 222	Networking Principles and Design	3
ENGL 204	English Communication Skills IV	3
Total		$\mathbf{1 6}$
SEMESTER 3		Credit
Course Code	Course Title	3
CVSQ 201	Early Formation of Civilization	3

CSIS 271	Database Technologies	3
MATH 261	Operations Research	3
ECON 201	Survey of Economics	3
	Elective	1
Total		16
SEMESTER 4		
Course Code	Course Title	Credit
CVSQ 202	The Religious Experience	3
CSIS 208	Algorithms and Data Structures	3
CSIS 231	Java Technology	3
CSIS 272	Database Systems Management	3
MGMT 220	Principles of Management	3
MRKT 220	Principles of Marketing	3

Total
\{Four-Week Training followed by a report submitted to the Department\}

SEMESTER 5

Course Code	Course Title	Credit
CVSQ 203	Introduction to Modernity	3
CSIS 276	Systems Analysis and Design	3
CSIS 232	Electronic Commerce	3
CSIS 279	Advances in Computer Science	3
	Elective	3
Total		$\mathbf{1 5}$

SEMESTER 6

Course Code	Course Title	Credit
CVSQ 204	Contemporary challenges in the Arab World	3
CSIS 278	Software Engineering and Quality Assurance	3
CSIS 277	Information Systems Management	3
CSIS 290	Senior Project	3
	Elective	3
Total		$\mathbf{1 5}$
Total credits		$\mathbf{9 6}$

Elective Courses

Free electives

COURSE DESCRIPTIONS

CSIS 200 INTRODUCTION TO COMPUTERS \& PROGRAMMING
3.3: 3 cr. E

This course provides students with a foundation of computing and algorithmic principles. It is intended to establish concrete skills in the constructs and algorithmic methods as an essential part of the software development process. Teaching is carried out by way of a lecture-and-homework agenda that emphasizes the design, construction, and analysis of algorithms, coupled to a lab-and-project agenda focused on the application of those principles in the use of software packages. Lecture-and-homework topics include: pseudo-language, algorithms, programming life cycle, procedural programming versus object-oriented programming, abstraction, objects and classes, decision constructs and repetition structures. Lab-and-project topics include: Windows and UNIX/Linux environments, databases, problem solving using spreadsheets and/or Matlab.

Pre-requisite: MATH 112.
CSIS 201 PROGRAMMING METHODOLOGY
3.0: 3 cr. E

This course introduces students to the foundation of the software development process. Programming is introduced as a problem solving activity by introducing students to a full-featured programming language (Java). Students learn all the skills in program design, implementation, and debugging necessary to solve computational problems. Emphasis is put on effective use of abstraction and the acquisition of software development skills. Topics include: Flow control, object-oriented analysis and design, abstraction, methods, arrays, encapsulation, inheritance.
Pre-requisite: CSIS 200.

CSIS 202 DATA STRUCTURE

3.0: 3 cr. E

The aim of this course is to provide an introduction to computer algorithms and data structures, with an emphasis on foundational material. Students will learn how to model data in a computer, how to specify and use standard ADTs, and how to implement such ADTs with standard data structures. An object-oriented approach to data structures and algorithms using C++ language is adopted. Topics include: Precondition/Postcondition specifications, Time/Complexity analysis techniques, different data structure such as array and dynamic arrays, pointer based structure, and linked list, stacks, queues, recursive thinking, trees, sorting and searching techniques and graphs.

CSIS 203 FUNCTIONAL PROGRAMMING

3.0: 3 cr . E

Programming with functions, top-down decomposition and stepwise refinement, higher-order functions, referential transparency, Lazy evaluation. The application language is LISP.
Pre-requisite: CSIS 200.

CSIS 204 OBJECT-ORIENTED PROGRAMMING

3.0: 3 cr. E

This is an advanced programming course. It covers the programming paradigms with examples, and the transition between modular programming and object-oriented programming. The course also covers data categorization and subdivision into classes and discusses inheritance of operations from one class to another. The language used is $\mathrm{C}++$.
Pre-requisite: CSIS 201.
CSIS 205 FORMAL SPECIFICATION \& VERIFICATION OF PROGRAMS
3.0: 3 cr . E

Mathematical and logical backgrounds, program specifications, program derivation, theories and tools for program derivation, proofs of correctness.

Informal specifications of programs, program development as a problem solving activity, development of algorithms and implementations, practical programming experience through a conventional programming language. Offered only to Civil, Mechanical and Chemical Engineering undergraduate students.
Pre-requisite: MATH 112.
CSIS 207 SENIOR TOPICS IN COMPUTER SCIENCE
3.0: 3 cr . E

The course covers topics of current interest in Computer Science that do not fall into a standard subarea of the curriculum. The course load involves lectures and a project. Through this project students will get hands-on experience, designing and implementing an interesting application. It is expected that the course will help students develop software design, analysis and implementation abilities through working with innovative tools and methodologies in some emerging area of high importance. Course content is revised and topics are selected on a yearly basis.

CSIS 208 ALGORITHMS AND DATA STRUCTURES
3.0: 3 cr . E

The course introduces computer algorithms and data structures, with emphasis on data modeling in a computer m standard ADT specification and implementation. An object-oriented appraoch to data structures and algorithms is adopted. Teaching methods is a combination of lectures, labs and tutoring sessions, with a number of projects.
Pre-requisite: CSIS 204.

CSIS 210 COMPUTER ORGANIZATION \& ASSEMBLY LANGUAGE
3.0: 3 cr . E

An introduction to computer organization and assembly programming covering the general structure of a microprocessor-based computer with detailed description of the data, address, and control buses used on the 8086 microprocessor. It also covers the assembly process and the instruction set of the 8086. In addition, it discusses I/ O and memory management.
Pre-requisite: CSIS 200.

CSIS 213 COMPILER DESIGN \& CONSTRUCTION

3.0: 3 cr . E

Overview of compilers including component functions and classification. Symbol table construction and operations; lexical analysis, parsers, code generation, and error handling. Intermediate code generation and compiler generators.
Pre-requisite: CSIS 208.

CSIS 214 COMPUTER ARCHITECTURE

3.0: 3 cr E

A quantitative approach to the study of computer architecture with emphasis on the basics of the RISC processors. Instructions set principles, pipelining, and principles of memory-hierarchy design, I/O, and storage systems.
Pre-requisite: CSIS 210.
CSIS 220 SYSTEMS PROGRAMMING
3.0: 3 cr .

The UNIX operating system is introduced as a programming environment. Topics include: the C language and libraries, history and overview of the UNIX operating system, the file structure, the shell, graphical user interfaces, the vi editor, programming the Bourne, the C and the Korn shell, UNIX utility programs, and UNIX networking.
Pre-requisite: CSIS 210.

This course is a comprehensive survey of operating systems principles. Topics covered include: process description and control, threads, process and disk scheduling, file and memory and I/O management, concurrency, networking and distributed processing, security.
Pre-requisite: CSIS 220.

CSIS 222 PRINCIPLES OF COMPUTER NETWORKING AND COMMUNICATION

3.0: 3 cr. E

This course is an introduction to network principles and network design. Topics include: Basic concepts and terminology of computer networks, networking models and theory, networking protocols, LAN, WAN, MAN, wireless and mobile network technologies, network performance, network security, layers of the Internet Protocol Suite (the TCP/IP family of protocols), Internet addressing (IPv4, IPv6), and network applications and services (such as DNS, HTTP, peer-to-peer networks, web servers, VPN, openSSL.)
Pre-requisite: CSIS 200.

CSIS 223 NETWORK CONFIGURATION AND PROGRAMMING

3.0: 3 cr. E

This course provides a foundation of network administration including account administration, resource allocation and optimization, and service management. Strategies for maintaining robust and secure networks are explored. Topics include, but are not limited to: Network administration and configuration, network management (SNMP), network security, access controls, error correction, routing protocols, congestion control (TCP, UDP), selection of topics including DHCP, ICMP, VPNs, and multicast. Programming assignments include developing client and server software using sockets, RMI or CORBA.
Pre-requisite: CSIS 222.

CSIS 230 INTRODUCTION TO CONCURRENT AND DISTRIBUTED PROCESSING

3.0: 3 cr. E

Design and analysis of concurrent programs with emphasis on those used for parallel and distributed processing. Mutual exclusion and deadlock detection. Communication and synchronization. Computational models: shared memory and message passing.
Pre-requisite: CSIS 220.

CSIS 231 JAVA TECHNOLOGY

3.0: 3 cr. E

This course introduces Java as a technology and a development and deployment platform (J2SE). It provides students with the skills to create applications that leverage the object-oriented features of Java, such as encapsulation, inheritance, and polymorphism. The course introduces students to GUI programming, multithreading, networking, and event-driven programming using Java technology GUI components. Students will develop classes to connect to SQL database systems by using the core aspects of JDBC API. Other topics include: Exception handling, multi-threading, RMI, two-tier and three-tier Java technology applications.
Pre-requisite: CSIS 204.
CSIS 232 ELECTRONIC COMMERCE
3.0: 3 cr E

The use of multimedia and the web for commercial applications is a vital opportunity. The course highlights the major areas of applications by selecting and analyzing real life examples. Students manipulate and design web pages using standard software packages. A term project is required.
Pre-requisite: CSIS 270.

Computer Interaction where users interact with portable mobile devices. This course covers the fundamental concepts of mobile computing including mobile area overview, concentrations on problems and solution in mobile networking, mobility and data management, service management and security for mobile andc wireless communication systems. topics include mobile communication, protocols and data format, mobile devices and components, data and service management, characteristics of mobiloe applications, and security in mobile computing environments.

Pre-requisite: CSIS 204.
CSIS 240 SEMANTICS OF PROGRAMMING LANGUAGES
3.0: 3 cr . E

Methods of defining programming language semantics: axiomatic, denotational, and operational semantics.
Pre-requisite: CSIS 208.

CSIS 245 SEMINAR IN COMPUTER PROGRAMMING

3.0: 3 cr . E

This course is recollection of the foundation of computing and algorithmic principles, programming life cycle, procedural programming and object-oriented programming, abstraction, objects and classes, decision constructs and repetition structures.

CSIS 246 SURVEY OF TELECOMMUNICATIONS AND COMPUTER NETWORKS

3.0: 3 cr . E

This course presents network principles and design. Topics include: Basic concepts and terminology of computer networks, networking models and theory, networking protocols, LAN, WAN, MAN, wireless and mobile network technologies, network performance, network security, layers of the Internet Protocol Suite (the TCP/IP family of protocols), Internet addressing (IPv4, IPv6), and network applications and services (such as DNS, HTTP, peer-to-peer networks, web servers, VPN, openSSL.)

CSIS 247 SURVEY OF DATABASE SYSTEMS AND TECHNOLOGIES
3.0: 3 cr . E

The course covers the steps in building health information systems: analysis, design and implementation. Emphasis is placed on creating and manipulating databases: concept of data, DBMS architecture, schema and sub-schema, database system life cycles, normalization, security, integrity, and concurrency. Database technologies and applications are emphasized in lab work and projects.

CSIS 250 COMPUTER GRAPHICS

3.0: 3 cr . E

An introduction to computer graphics. The PHIGS and GKS graphics standards; geometrical transformation in 2D and 3D; viewing in 3D; projection; representing curves and surfaces; visible surface determination; advanced modeling techniques (factual models, spline, Bezier); color theory, realism, and rendering; elimination and shading.
Pre-requisite: CSIS 208, MATH 200, 212.

CSIS 251 COMPUTER GRAPHICS DESIGN I

3.0: 3 cr .

The student learns how to produce different kinds of illustrations and posters using computer software: advertising art, technical drawing, book illustration, and map production. Topics covered include: drawing, transformations, layers, color palette, 3D drawing, perspective, light, rendering, and texture. (Some projects will involve the use of OPENGL). Softwares used to design projects are: Corel Draw, Illustrator, 3D max and Freehand.

CSIS 252 COMPUTER GRAPHICS DESIGN II
3.0: 3 cr. E

This course shows how professional artists use computer software (such as Photoshop or Painter) to manipulate, edit, and enhance scanned images to create a variety of special effects using artistic filters (such as KAI's power
tools plug-in filter). Topics covered include: image editing, image enhancement, layers, construction of color palette, image mode (RGB, CMY,) light effects, transparency, mask, brushes, texture, and morphing.

CSIS 253 COMPUTER GRAPHICS DESIGN III

3.0: 3 cr. E

This course permits students to acquire a good knowledge of multimedia technologies. The student learns through practical projects to edit and produce video clip with sound and animation. Topics include video morphing (dynamic imaging). The student studies the programming language LINGO for Macromedia Director to make the projects truly interactive. (Adobe Premiere will be available for these projects).
Pre-requisites: CSIS 251/252.
CSIS 260 INTRODUCTION TO ARTIFICIAL INTELLIGENCE
3.0: 3 cr . E

Overview of methods used in Artificial Intelligence selected from knowledge representation, search techniques, theorem proving, expert systems, and natural language understanding.
Pre-requisite : CSIS 231.
CSIS 270 DATABASES
3.0: 3 cr. E

Data, DBMS architecture, schema and sub-schema, levels of data representation, database system life cycles. Relations within database architecture. Decomposition, normalization, hierarchy, and network. Data description language (DDL). Data manipulation language (DML); query languages and query optimization in centralization systems. Database security, integrity, and concurrence.

CSIS 271 DATABASE TECHNOLOGIES
3.0: 3 cr . E

The course is designed as a second undergraduate course in databases. It is intended to cover both theory and application issues. Emphasis is placed on implementation more than design. Topics included: Database servers, transaction definition and properties, concurrency control, buffer management, reliability, query optimization, distributed architectures, and interoperability.
Pre-requisite: CSIS 270.

CSIS 272 DATABASE SYSTEMS MANAGEMENT

3.0: 3 cr . E

The course is an advanced one in database technologies and a continuation of the course dealing with database design. Topics included are: Storage and file structure, indexing and hashing, query processing, transaction concept, concurrency control, and recovery systems. Open only for seniors.
Pre-requisite: CSIS 270.
CSIS 273 PERSONAL COMPUTING FOR APPLIED SCIENCES
3.0: 3 cr . E

This course helps the student become a power user of several software packages used in daily problem solving. Topics covered include: personal productivity tools, statistical software for data analysis, database querying and Internet use. The course employs a combination of lecture-based delivery of material and experimental handson problem solving workshops.

CSIS 274 END USER COMPUTING

3.0: 3 cr .

This course helps the student become a power user of several software packages used in business problem solving. Topics covered include: personal productivity tools, what-if analysis, business charting and graphing, Internet browsing, and web page creation and maintenance. The course employs a combination of lecturebased delivery of material and experimental hands-on problem solving workshops.
specifications). Project management. Practical applications. Schedule and cost.
Pre-requisite: CSIS 270.
CSIS 277 INFORMATION SYSTEMS MANAGEMENT
3.0: 3 cr . E

The course is an advanced study in Information Systems requiring a solid background in systems analysis and design, and information technology. Professional issues are treated at both theoretical and practical levels. Topics covered: the managerial functions, the role of information, its sources and pricing, project management, IT sourcing, TQM in Information Systems management, IT role in organizational change. Project management. Pre-requisite: CSIS 276.

CSIS 278 SOFTWARE ENGINEERING AND QUALITY ASSURANCE

3.0: 3 cr. E

The course covers methods and tools for achieving software quality assurance at various levels of a software system including at the module, subsystem, and system levels. State of the art tools and techniques are covered. The course will prepare students to develop a software quality assurance program in structured, organized ways. Pre-requisite: CSIS 276.

CSIS 279 ADVANCES IN COMPUTER SCIENCE
3.0: 3 cr . E

The course exposes students to software design, analysis and implementation abilities trough working with inoovative tools and methodologies in some emerging area of high importance. Course content is revised and topics are selected on a yearly basis.
Pre-requisite : CSIS 231.

CSIS 280 INTRODUCTION TO THE THEORY OF COMPUTATION

3.0: 3 cr . E

This course introduces the basics of the theory of computation. Topics covered include: automata theory and formal languages, computability by Turing machines and recursive functions, computational complexity, and mathematical logic.
Pre-requisite: CSIS 200.
CSIS 290 SENIOR PROJECT
3.0: 3 cr. E

The purpose of the course is to provide an opportunity to finish a project under the direct supervision of a faculty member. The project should cover a practical aspect of a research for students to work on its design from conception through implementation and testing. Students meet regularly with the instructor to track technical and project management issues. Complete project documentation, written reports and oral presentations are required.

CSIS 295 DIRECTED STUDY IN DATABASES

1.0: 1 cr. E

The course's aim is to develop in students their mastery of new database technologies, and their ability to independently update their knowledge and its applications (forms, reports...). Tutorials on one specific database area, taking into consideration the new developments in technology, and lab notes will be provided by the Department. The course supervisor assigns weekly meetings with the students for follow up.
Pre-requisite: CSIS 271.
CSIS 296 DIRECTED STUDY IN NETWORKING
1.0: 1 cr. E

The course's aim is to develop in students their mastery of new techniques and methods in networking and their applications. Tutorials and lab notes are provided by the Department. A supervisor is assigned for the course. The content might vary from one semester to another, taking into consideration the new developments in
technology. There are no set lectures; instead, the students and the supervisor meet once a week for follow up. Pre-requisite: CSIS 222.

CSIS 297 DIRECTED STUDY IN PROGRAMMING
1.0: 1 cr E

The course's aim is to develop in students their ability to independently update their knowledge through tutorials and lab notes. A supervisor is assigned for the course. The offered language is selected by the Department taking into consideration the market demand. Instead of lectures, the students and the supervisor meet once a week for follow up.
Pre-requisite: CSIS 204.
CSIS 298 SEMINARS IN COMPUTING
1.0: 1 cr . E

This course provides an opportunity to meet with experts or people working on new developments in the computing field. Upon completion, students should be able to demonstrate an understanding of a specific area of study through a project, paper and a presentation.

ACCT 202, BUSN 230, 322, ECON 201, 211, 212, FINE 220, ISYS 330
Refer to the Faculty of Business and Management.
CVSQ 201, 202, 203, 204
Refer to the Civilization Sequence Program.
ENGL 203, 204
Refer to the Division of English Language and Literature.
MATH 200, 201, 212, 230, 240, 246, 261.
Refer to the Department of Mathematics.

DEPARTMENT OF ENVIRONMENTAL SCIENCES

The Department of Environmental Sciences offers a Bachelor of Science (B.Sc.) degree to students who have successfully completed a minimum of $\mathbf{9 6}$ credits of required courses provided that they satisfy the standards set by the University and the Faculty.
The Department of Environmental Sciences trains students to understand the scientific basis of the environmental crisis, as well as the social, political and economic factors that affect environmental problems and solutions. The B.Sc. in Environmental Sciences provides breadth in the physical and life sciences and depth in a chosen area of scientific concentration, either aquatic resources or land resources management. Students can also choose the premedical track, and thus have the opportunity to pursue a career in Medicine. Initiated in the proper research and scientific approaches, our students have the option of becoming scientists, managers, planners, decision makers, community activists, or pursue graduate studies.
To graduate with a B.Sc. in Environmental Sciences, students must complete the following:

I. 50 credits of Major Courses (in Major \& General Averages):

BIOL 201, 202, 203, 204, 207, 208, CHEM 202, 203, 292, EVSC 201, 207, 211, 213, 233, 239, 241, 242, 243, 245, 249.

II. 19 credits of Department-Required Courses

CHEM 240, CSIS 273, MATH 203, 242, 272, PHYS 211, 212.

III. 18 credits of University-Required Courses

ENGL 203, 204, CVSQ 201, 202, 203, 204.

IV. 09 credits of Elective Courses

BACHELOR OF SCIENCE IN ENVIRONMENTAL SCIENCES

SEMESTER 1

Code

BIOL 201

Course Title

General Biology I

3
General Biology I Lab 1
BIOL 202
CHEM 202
CHEM 203
CSIS 273
ENGL 203
MATH 203

Total

Basic Chemistry 3
Basic Chemistry Lab 1
Personal Computer for Applied Sciences 3
English Communication Skills III 3
Mathematics for Applied Sciences 3
17

SEMESTER 2

Code	Course Title	Credit
BIOL 203	General Biology II	3
BIOL 204	General Biology II Lab	1
CVSQ 201	Early Formation of Civilization	3
ENGL 204	English Communication Skills IV	3
MATH 272	Differential Equations for Applied Sciences	3
BIOL 207	General Ecology	3
BIOL 208	General Ecology Lab	1
Total		$\mathbf{1 7}$

SEMESTER 3
Code
PHYS 211
PHYS 212 Fundamentals of Physics I Lab
CHEM 240 -
Basic Organic Chemistry 3
EVSC 201 Environmental Sciences: Creating a Sustainable Future 3
EVSC 213 Restoration and Reclamation Ecology 3
EVSC 249 Writing for Environmental Professionals 3
Total
SEMESTER 4

Code

CHEM 292
MATH 242
Course Title
Environmental Chemistry

Credit

Statistics for Applied Sciences
3
EVSC 245 Marine Ecosystems
EVSC 233 Pollution Sources and Transport in Ecosystems 3
CVSQ 202 The Religious Experience: The Sacred 3
Total

SUMMER SEMESTER

Code	$\begin{array}{l}\text { Course Title } \\ \text { EVSC } 211\end{array}$
Project Residency	

Total
SEMESTER 5

Code
EVSC 207

Course Title

Coastal Zone Management
EVSC 239 Environmental Economics and Development Credit

3
CVSQ 203 Introduction to Modernity 3
Electives 6
Total 15

Credit
3

3

SEMESTER 6

Code
CVSQ 204
Course Title Credit
EVSC 241 Natural Resources Planning and Policy 3
EVSC 242 Natural Resources Planning and Policy Lab 1
EVSC 243 Special Topics for Environmental Sciences 3
Electives 3
Total 13
Total credits 96
ENVIRONMENTAL SCIENCE ELECTIVE COURSES
I- Within the Department
IA- Aquatic Resources Concentration
Code Course Title CreditEVSC 221Assessment and Management of Fish Populations3
EVSC 222 Assessment and Management of Fish Populations Lab 1
EVSC 247 Environmental Risk Perception 3
IB- Land Resources Concentration
Code Course Title Credit
EVSC 219 Wildlife Resources Management 3
EVSC 247 Environmental Risk Perception 3
EVSC 251 Protected Areas Management and Planning 3
IC- Additional Electives
Code Course Title CreditEVSC 209 Introduction to Aquaculture3
EVSC 235 Environmental Communication Approaches 3
EVSC 237 Ecotourisim Planning and Development 3

II- Premedical Track

Students wishing to follow the Premedical track are requested to register for the following as electives:

Code

CHEM 242*
CHEM 24** Organic Chemitry
CHEM 244* Organic Chemistry II
CHEM 222 Analytical Chemistry or equivalent

Credit

3PHYS 213 Fundamentals of Physics II
PHYS 214 Fundamentals of Physics II Lab 1

* Replace CHEM 240 (refer to the Department of Chemistry)

Students will have to register for three additional credits to the required number for the BS in Environmental Sciences.

Minor in Environmental Sciences

The Department of Environmental Sciences offers a Minor available to all Faculties at the University. This minor presents students the opportunity to focus on a growing national and international issue by taking only 18 credits at the Department. In addition to the 4 mandatory courses, students may choose between any of the remaining EVSC courses for completing the requirements for the Minor.

Refer to the table below for details.

Environmental Sciences Courses	Credit	Mandatory	Electives
EVSC 201: Creating a Sustainable Future	3	X	
EVSC 207: Coastal Zone Management	3		X
EVSC 209: Introduction to Aquaculture	3		X
EVSC 211: Project Residency	3		X
EVSC 213: Restoration and Reclamation Ecology	3		X
EVSC 219: Wildlife Resources Management	3		X
EVSC 221: Assessment and Management of Fish Populations	3		X
EVSC 222: Assessment and Management of Fish Populations Lab	1		X
EVSC 233: Pollution Sources and Transport in Ecosystems	3	X	
EVSC 235: Environmental Communication Approaches	3		X
EVSC 237: Ecotourism Planning and Development	3		X
EVSC 239: Environmental Economics and Development	3		X
EVSC 241: Natural Resources Planning and Policy	3	X	
EVSC 243: Special Topics for Environmental Sciences	3		X
EVSC 245: Marine Ecosystems	3	X	
EVSC 246: Marine Ecosystems Lab	1		X
EVSC 247: Environmental Risk Perception	3		X
EVSC 249: Writing for Environmental Professionals	3		X
EVSC 251: Protected Areas Management and Planning	3		X

COURSE DESCRIPTIONS

EVSC 100 INTRODUCTION TO ENVIRONMENTAL SCIENCE

3.0: $3 \mathrm{cr} . \mathrm{E}$

This course will introduce the principles of basic-science and technology involved in processes of environmental change, pollution and protection of natural resources, and their implications to economic and human systems. (For Freshman students only).

EVSC 200 INTRODUCTION TO ENVIRONMENTAL STUDIES
3.1: 1 cr. E

The course introduces the student to the natural environment as it relates to people's lives. Aspects of the natural environment such as relationships between living and non living elements are discussed. The course also looks into environmental degradation and causes of pollution as well as ways to control them. The course will expose students to practical knowledge on environmental conversation which they will use in their daily lives as the course emphasizes the role of individuals in this area.

EVSC 201 ENVIRONMENTAL SCIENCES: CREATING A SUSTAINABLE FUTURE

3.0: 3 cr. E

This course introduces students to the root causes of the environmental crisis, explains how to critically analyze all of the issues and competing viewpoints, provides in depth case studies and the latest statistics and scientific findings within the field. It examines the interactions between humans, social systems, and environmental damage across the globe, emphasizes the need for fundamental changes in human behavior and shows how systems can be redesigned to be sustainable.
Co-requisite: BIOL 207.

EVSC 207 COASTAL ZONE MANAGEMENT

3.0: 3 cr. E

This course introduces the student to a wide range of coastal environments including studies on rocky and sandy beaches. The course mixes theory and practice of coastal planning and management and demonstrates the importance of combining abstract and technical elements to achieve the best outcome for the coastal zone. Case studies will show examples of sound practice and differences in approaches around the world as well as the linkage between scales of coastal planning.

Pre-requisite: BIOL 207.

EVSC 209 INTRODUCTION TO AQUACULTURE

3.0: 3 cr. E

This course introduces the history of Aquaculture and its importance. Covers the fundamentals of engineering, nutrition, husbandry, diseases of cultured fishes and management of fish farms.

EVSC 211 PROJECT RESIDENCY

3.0: 3 cr. E

This course provides students with practical experience through their participation in on-going projects at organizations or institutions working in the fields of environment and development. Students are required to complete their residency over a period of two months under the supervision of a Faculty member.

EVSC 213 RESTORATION AND RECLAMATION ECOLOGY

3.0: 3 cr. E

Theory and case studies of disturbances, restoration and reclamation; character and processes of ecological systems; types of natural systems; types of disturbance and their impact; restoration and reclamation strategies for forests, deserts, watersheds, riparian zones, streams and rivers.

Pre-requisite: BIOL 207.

This course provides a study of the ecological principles governing wild animal populations and their habitats and the relationship of these principles to management programs and decisions. This course will introduce techniques that can be used at the different levels of wildlife management: field, regional, national, international.
Pre-requisite: BIOL 207.

EVSC 221 ASSESSMENT AND MANAGEMENT OF FISH POPULATIONS

3.0: 3 cr . E

This course introduces the theory and methods for estimating vital statistics of fish populations, the use of computers and statistical software to describe, analyze, and model attributes of fish populations, applied aquatic and fish ecology related to fisheries, the role of planning in fisheries management and the application of management tools and assessment of their efficacy.

EVSC 222 ASSESSMENT AND MANAGEMENT OF FISH POPULATIONS LAB

1.0: $1 \mathrm{cr} . \mathrm{E}$

Laboratory sessions include giving the students hands on experience with different fishing techniques, tagging studies and fish population sampling. Involves $1 / 2$ day field trips out at sea.
Co-requisite: EVSC 221.

EVSC 233 POLLUTION SOURCES AND TRANSPORT IN ECOSYSTEMS

3.0: 3 cr. E

This course introduces students to the different sources of pollutions and their means of transport in air, soil and water. Toxic action and fate of environmental pollutants, pollution control, eco-toxicological impact and standard testing methods will be covered.

Pre-requisite: EVSC 201.
EVSC 234 POLLUTION SOURCES AND TRANSPORT IN ECOSYSTEMS LAB
1.0: 1 cr. E

Laboratory sessions and field trips to appropriate locations where the theoretical information can be consolidated into practical knowledge.
Co-requisite: EVSC 233.

EVSC 235 ENVIRONMENTAL COMMUNICATION APPROACHES

3.0: 3 cr. E

This course is based on cooperative learning activities. Students will learn how to organize environmental workshops and will get introduced to the theories and skills of alternative dispute resolution approaches, citizen participation strategies, public participation structures and dynamics, public policy decision making and implementation, risk communication, leadership styles and small group dynamics.

EVSC 237 ECOTOURISM PLANNING AND DEVELOPMENT

3.0: 3 cr. E

This course offers students a study of the fundamental concepts of nature based tourism planning and its contribution to community development. The course emphasizes the negative and positive economic, social, and environmental impacts of nature based tourism.

EVSC 239 ENVIRONMENTAL ECONOMICS AND DEVELOPMENT

3.0: 3 cr. E

Significant environmental destruction is caused by insufficient and incorrect attention to economics. Examples include subsidized prices for natural resources, neglect of external costs and benefits, and an excessive commitment to GNP growth and its neglect of the biophysical system in which the economy is embedded. In this class, students will be introduced to basic micro- and macroeconomics, distribution and trade, and the application of economic and social science principles and techniques to production, consumption, and valuation of natural resources. Students will also study differences between standard economists and the more interdisciplinary ecological economists.
making, with a focus on community-based natural resource management. The course focuses on ecosystembased planning and policy issues through development of a multiple-use plan. Sources and use of environmental data are discussed and illustrated. A general overview of environmental laws on the national scale will be attempted.
Pre-requisites: EVSC 201, 239.
EVSC 242 NATURAL RESOURCES PLANNING AND POLICY LAB
1.0: $1 \mathrm{cr} . \mathrm{E}$

This course focuses on the applications of remote sensing, forest fire management and policy tools. Co-requisite: EVSC 241.

EVSC 243 SPECIAL TOPICS FOR ENVIRONMENTAL SCIENCES

3.0: 3 cr. E

This course introduces students to the new and current topics in the environmental sciences. Sessions will include exposure to environmental impact assessment methodologies, GIS systems, remote sensing and modeling and their applications to the environmental sciences and decision making. An overview of Lebanese environmental laws, policies and legal processes will also be covered.
Pre-requisite: EVSC 201.

EVSC 245 MARINE ECOSYSTEMS

3.0: 3 cr. E

The course will present a broad overview of the field of marine biology. It will introduce the student to the marine environment, the physical forces governing marine organisms, the different marine ecosystems, the diversity of marine life, and techniques of investigation of marine systems.
Pre-requisite: EVSC 201.
EVSC 246 MARINE ECOSYSTEMS LAB
1.0: $1 \mathrm{cr} . \mathrm{E}$

This lab will provide students with hands-on experience in gathering and analyzing field data on marine ecosystems, and in gaining skills using a range of research tools and techniques.
Co- requisite: EVSC 245.

EVSC 247 ENVIRONMENTAL RISK PERCEPTION

3.0: 3 cr E

Concepts, problems, and research related to the assessment and management of environmental hazards, current psychological, sociological and cultural theories in risk perception, communication and policy. Emphasis will be placed on the interplay between science, politics, law, cultural values and public opinion.

EVSC 249 WRITING FOR ENVIRONMENTAL PROFESSIONALS

3.0: 3 cr . E

This course introduces students to the principles and practice of writing skills required of environmental professionals. Students will develop proficiency in determining the purpose of a document, analyzing the audience; selecting, developing and organizing the information in an appropriate design, and writing clearly, precisely, and effectively.
Pre-requisite: ENGL 203.

EVSC 251 PROTECTED AREAS MANAGEMENT AND PLANNING

3.0: 3 cr. E

This course introduces principles and methods of management of protected areas. Current principles and practices relevant to the planning of protected areas and recreational environments in wild settings. It includes the integration of biological and sociological criteria in the management of protected areas and recreational environments.

Pre-requisites: BIOL 207, and EVSC 201, 241.

BIOL 201, 202, 203, 204, 207, 208
Refer to the Department of Biology.
CHEM 202, 203, 240, 245, 248, 292, 293
Refer to the Department of Chemistry.
CVSQ 201, 202, 203, 204
Refer to the Civilization Sequence Program.
CSIS 273
Refer to the Department of Computer Science.
ENGL 203, 204
Refer to the Division of English Language and Literature.
MATH 203, 242, 272
Refer to the Department of Mathematics.
PHYS 211, 212
Refer to the Department of Physics.

DEPARTMENT OF MATHEMATICS

The Department of Mathematics offers a program leading to a Bachelor of Science in Mathematics. The program aims at:

1. Providing students with a robust and extensive background in mathematics
2. Preparing students for graduate and further higher level studies
3. Preparing students to pursue a profession in mathematics or mathematics education or careers in various industries where there is a demand for a rigorous understanding of mathematics or statistics
4. Developing the student's ability to pursue knowledge independently by acquiring skills in problem solving, critical thinking, and logical analysis
5. Enabling students to understand the power of mathematics and its role in human culture
6. Emphasizing the close association of mathematics with the real world and its role in the fields of social sciences, physical and life sciences, engineering, and business.
The program of study leads to a Bachelor of Science in Mathematics with the following tracks:
7. General Mathematics
8. Applied Mathematics
9. Actuarial Science
10. Statistics

Students in each of these tracks may obtain teacher certification by including in their programs the teaching diploma requirements; see Department of Education.
To qualify for a BS degree in Mathematics the student must complete a minimum of 90 credits. These include: a- 30 credits in general University requirements

- 12 credits of the Civilization Sequence, namely CVSQ 201, CVSQ 202, CVSQ 203, CVSQ 204.
- 6 credits of English Language courses including ENGL 203 and another higher level English Language course.
- 12 credits in general elective courses chosen from within the Department of Mathematics or from outside the Department.
b- 21 credits in mandatory core courses, namely:

Course Code	Course Title	Credit
MATH 200	Calculus I	3
MATH 202	Calculus II	3
MATH 211	Linear Algebra I	3
MATH 230	Numerical Analysis I	3
MATH 246	Probability	3
MATH 279	Differential Equations	3
CSIS 206	Principles of Programming	3

c- 39 credits in major courses from the Department depending on the concentration track being pursued by the student.

CONCENTRATION TRACK COURSES

1- The General Mathematics Track

This track is designed to provide a strong mathematical background for students who are interested in pursing a higher degree in mathematics or those who are interested in teaching Mathematics at high school level.

Course Code

PHYS 211 Fundamentals of Physics I
MATH 205 Real Analysis
MATH 206 General Topology
MATH 208 Complex Analysis
MATH 210 Algebra
Linear Algebra II

Credit

3 3
33
33

MATH 213
MATH 217 Ring and Modules Theory
MATH 241 Statistics I 3
MATH 243 Statistics II 3
MATH 261 Operations Research 3
MATH $271 \quad 3$
MATH 281 Differential Geometry 3
MATH 282 Computational Geometry I 3

2- The Applied Mathematics Track

This track is a professionally oriented program designed to provide opportunities for students to develop functional competence in mathematics and an appreciation for the contribution of mathematics to science and engineering. With this track, the Department aims to prepare students to pursue graduate studies in Mathematics or other related fields or embark on a career in industry or education.

Course Code	Course Title	Credit
MATH 205	Real Analysis	3
MATH 208	Complex Analysis	3
MATH 213	Linear Algebra II	3
MATH 215	Graph Theory	3
MATH 216	Algorithms and Data Structure	3
MATH 231	Numerical Analysis II	3
MATH 241	Statistics I	3
MATH 261	Operations Research	3
MATH 271	Partial Differential Equations	3
MATH 274	Calculus of Variation	3
MATH 299	BS Project or Major Elective	3
PHYS 211	Fundamentals of Physics I	3
PHYS 213	Fundamentals of Physics II	3

3- The Actuarial Science Track

One of the most rewarding professions for a person with mathematical talent is that of being an actuary. An actuary is a financial expert who specializes in the Mathematics and laws of the insurance industry. Actuaries need a strong background in Mathematics in order to understand the behavior of insurance claims and investments. Most actuaries work for insurance companies, but others work in the public sector or in private
consulting firms. Students trained as actuaries are also prepared for jobs as statisticians, demographers, and mathematicians.
Students following this track will have a solid educational background to take the actuary exams set by the Society of Actuaries (www.soa.org) which is a professional accrediting body in Actuary Mathematics. Students enrolled in the program will be ready to take Actuarial Exam I after the second year of study and Actuarial Exam II upon graduation. Students will also be prepared to take the more advanced actuarial exams.

Course Code
MATH 241
MATH 243 Statistics II
MATH 251 Life Contingencies I
MATH 252 Life Contingencies II
MATH $254 \quad$ Risk and Reserves in Casualty Insurance
MATH 255 Methods for Ratemaking 3
MATH 256 Actuarial Estimation Methods 3
MATH 261 Operations Research 3
MATH 262 Math for Finance 3
MATH 264 Game Theory and Decision Analysis 3
MATH $299 \quad$ BS Project or Major Elective 3
ECON 211 Microeconomics 3
ECON 212 Macroeconomics

Credit

3
3 3 3 3 3 3 3 3 3 3

4- The Statistics Track

The world is becoming more and more quantitative. Many professions depend on numerical measurements to make decisions in the face of uncertainty. Statisticians use quantitative abilities, statistical knowledge, and communication skills to work on many challenging problems. The BS Statistics program provides students with a sound understanding of statistical methods, their underlying theories, and their applications. It aims to prepare students for immediate work as statisticians in public sector, industry, and research institutions. The program also aims to provide students with a good foundation in pursuing graduate studies in Statistics or other related fields.

Course Code	Course Title	Credit
MATH 221	Graph Theory	3
MATH 241	Statistics I	3
MATH 243	Statistics II	3
MATH 244	Categorical Data Analysis	3
MATH 245	Stochastic Processes	3
MATH 249	Statistical Computing	3
MATH 251	Life Contingencies I	3
MATH 261	Operations Research	3
MATH 262	Math for Finance	3
MATH 264	Game Theory and Decision Analysis	3
MATH 265	Optimization	3
MATH 271	Partial Differential Equations	3
MATH 299	BS Project or Major Elective	3

Students majoring in Statistics can have a Biostatistics option by substituting three general elective courses with the following courses: General Biology I (BIOL 201), General Biology II (BIOL 203), and Principles of Epidemiology and Biostatistics (FHSC 282) or equivalent courses.

COURSE DESCRIPTIONS

MATH 200 CALCULUS I

4.0: 3 cr . E

This course covers techniques of integration for definite and indefinite integrals as well as applications of definite integrals. Sequences and their limits and the convergence and divergence of infinite series and power series follow. The course then gives an overview of first order differential equations and their solution sets. Polar coordinates are introduced. The course finally presents functions of several variables, limits and continuity of multivariable functions, partial derivatives, the chain rule and multiple integrals. Multivariable functions.
Pre-requisite: MATH 113.

MATH 201 MATHEMATICS FOR COMPUTATION

4.0: 4 cr . E

This course includes topics from algebra, linear algebra, and calculus. It contains: laws of logic, sets and relations, functions, induction and recursion, Boolean algebra, matrix algebra, solution of linear systems, power series, functions of several variables.
Pre-requisite: MATH 112.

MATH 202 CALCULUS II

4.0: 3 cr . E

The course covers the following topics: multi-variable functions, multiple integrals, cylindrical and spherical coordinates, line integrals, circulation and flux, Fourier series, and Laplace Transform.
Pre-requisite: MATH 200.

MATH 203 MATHEMATICS FOR APPLIED SCIENCES

3.0: 3 cr . E

This course covers techniques of integrations, infinite series, polar coordinates, functions of several variables, partial derivatives, chain rule, multiple integrals with applications.
Pre-requisite: MATH 113.

MATH 204 ENGINEERING TOPICS IN MATHEMATICS

3.0: 3 cr. E

This is a remedial course that covers: Multiple integrals, vector fields, Fourier series, Laplace Transform, power series solutions of ODE, partial differential equations, numerical algorithms, finite difference calculus, interpolation and extrapolation, roots of equations, numerical solution of simultaneous linear algebraic equations, least-squares approximation, numerical integration, numerical solution of ordinary differential equations.
Pre-requisite: MATH 200.

MATH 205 REAL ANALYSIS

3.0: 3 cr . E

The real number system, sequences and subsequences, Cauchy sequences, supremum and infimum, accumulation points, pointwise and uniform convergence, limits and continuity of functions.
Pre-requisite: MATH 200.

Metric spaces and topological spaces, completeness, compactness, connectedness, separation, topological properties.
Pre-requisite: MATH 205.

MATH 207 SET THEORY

3.0: 3 cr. E

Countable and uncountable sets, cardinality and cardinal arithmetic, the construction of the real numbers, the continuum hypothesis, transfinite numbers, the axiom of choice.
Pre-requisite: MATH 206.

MATH 208 COMPLEX ANALYSIS

3.0: 3 cr. E

Complex numbers, analytic functions, derivatives, Cauchy-Reimann equations, complex integrations, Cauchy integral theorem, power series, Taylor and Laurent series, residue theorem, conformal mappings.
Pre-requisite: MATH 200.

MATH 210 ALGEBRA

3.0: 3 cr. E

The construction of N, Z, Q, R, and C. Elementary algebraic structures like groups, rings, fields, and integral domains. Reducibility and unique factorization. Ideals and quotient rings.

MATH 211 LINEAR ALGEBRA I

3.0: 3 cr. E

Linear systems, matrix operations, echelon form, vector spaces, linear transformations, determinants, eigenvalues and eigenvectors, diagonalization of matrices.
Pre-requisite: MATH 113.

MATH 213 LINEAR ALGEBRA II

3.0: 3 cr. E

The geometry of linear transformations, quadratic forms and conic sections, inner product spaces, orthogonality, the Gram-Schmidt orthogonalization process, orthogonal projections, normed spaces, diagonalization and orthogonal diagonalization.
Pre-requisite: MATH 211.

MATH 214 COMBINATORICS

3.0: 3 cr E

Permutations and combinations, counting principles, inclusion-exclusion, recurrence relations and generating functions, graphs and trees. Combinatorial designs and coding theory, combinatorial existence theorems. Pre-requisite: MATH 200, 210.

MATH 215 GRAPH THEORY

3.0: 3 cr. E

This course covers: Paths, circuits, cuts, trees, chains, Euler graphs, matrix representation, spanning trees, connectivity of a graph, Hamiltonian graphs, graph factorization. Topics may include planar graphs, external graph theory, directed graphs, enumeration, algebraic graph theory, probabilistic graph theory, graph embedding, graph coloring problems and applications.

MATH 216 ALGORITHMS AND DATA STRUCTURE

3.0: 3 cr . E

This course covers the concept of data structure algorithms: Lists, graphs, rooted trees, heaps, and disjoint set structures. Topics may include Greedy algorithm, probabilistic algorithm, dynamic programming, efficiency and complexity of algorithms
Pre-requisite: MATH 215.

Introduction:Vector spaces, Abelian groups. Rings: Basic definitions and examples, Ringhomomorphisms, Direct sums and products, Ideals ofrings. Modules: Basic definitions and examples, Directsums and products, Semisimple modules, Chain conditions, Modules with finite length, Tensor products, Modules over principal idea domains. Pre-requisite: MATH 211.

MATH 221 NUMBER THEORY

3.0: 3 cr. E

Divisibility, congruences, arithmetic functions, Chinese remainder theorem, Fermat theorem, quadratic forms, quadratic reciprocity, Diophantine equations.
Pre-requisites: MATH 211.

MATH 230 NUMERICAL ANALYSIS I

3.0: 3 cr. E

Analysis and implementation of several numerical methods: Finite difference calculus, interpolation and extrapolation, solution of systems of linear equations, root of equations, least square curve fitting, numerical integration, numerical solution of ordinary differential equations.
Pre-requisites: CSIS 200, MATH 200, and MATH 211.

MATH 231 NUMERICAL ANALYSIS II

3.0: $3 \mathrm{cr} . \mathrm{E}$

Finite elements methods, solution of elliptic, hyperbolic and parabolic equations, approximation, matrix representation, solution of non-linear systems, solution of non stationary systems, numerical methods to calculate eigenvalues and eigenvectors.
Pre-requisites: MATH 230 and MATH 271.

MATH 240 PROBABILITY AND STATISTICS

4.0: 4 cr. E

Introduction to descriptive statistics, random variables and probability distribution, mathematical expectation. Discrete probability distributions: Uniform, Binomial and Multinomial, Hyper-geometric, Negative Binomial, Geometric and Poisson distributions. Continuous probability distribution: Normal distribution, Gamma and Exponential distributions, c2 distribution. Topics from inference statistics: Sampling theory, estimation theory, tests and significations.
Pre-requisite: MATH 200.

MATH 241 STATISTICS I

3.0: 3 cr .

This course is an introduction to inferential statistics. It covers sampling theory, estimation of the mean, variance, and proportion parameters for one and two groups. Bayesian estimation, maximum likelihood estimation, hypothesis tests and significations.
Pre-requisite: PHYS 100, PHYS 102, MATH 113.

MATH 242 STATISTICS FOR APPLIED SCIENCES

3.0: 3 cr E

This course introduces students to statistical inferences and applications. Topics covered include: Sampling theory, estimation theory, confidence intervals, hypothesis tests and significations, t test (Student), F test (Fisher) and $\chi 2$ test (Pearson) , linear regressions, and correlation. This course is not offered for Mathematics students.

MATH 243 STATISTICS II

3.0: 3 cr. E

This course covers one and two-factor analysis of variance (ANOVA), regression and multiple regressions, nonparametric statistics, introduction to time series.
Pre-requisite: MATH 241.

This course focuses on analyzing categorical response data in scientific fields. The topics include performing stratified data analysis, using model-building strategies, assessing the fit of a binary logistic regression model, and detecting interactions and nonlinear effects. It covers the two-way and three-way contingency tables, logistic regression, loglinear models for contingency tables, collapsibility, ordinal associations, multicategory logistic models.

MATH 245 STOCHASTIC PROCESSES

3.0: 3 cr. E

This course covers the analysis and modeling of stochastic processes. Topics include measure theoretic probability, martingales, filtration, and stopping theorems, elements of large deviations theory, Brownian motion and reflected Brownian motion, stochastic integration. In addition, the course will cover some applications to finance theory, insurance, queuing and inventory models.

MATH 246 PROBABILITY

3.0: 3 cr .

Introduction to descriptive statistics, random variables and probability distribution, mathematical expectation. Discrete probability distributions: Uniform, Binomial and Multinomial, Hyper-Geometric, Negative Binomial, Geometric and Poisson distributions. Continuous probability distribution: Normal distribution, Gamma and exponential distributions, C 2 distribution.
Pre-requisite: MATH 200.

MATH 249 STATISTICAL COMPUTING

3.0: 3 cr. E

The combination of more powerful microcomputers and statistical software designed specifically for them has revolutionized the world of Statistics and Data Analysis. Use of statistical software helps students to understand the theoretical results better and gives them a chance to apply the techniques to real world problems. Introduction to the use of major statistical packages such as SAS, SPSS, Statistica, and Minitab.

MATH 251 LIFE CONTINGENCIES I

3.0: $3 \mathrm{cr} . \mathrm{E}$

The mortality table, life annuities, pensions, life insurance premiums, reserves, cash value, loss premiums, dividends.
Pre-requisite: MATH 211.

MATH 252 LIFE CONTINGENCIES II

3.0: 3 cr. E

The measurement of mortality, life annuities, life insurance, net annual premiums, net level premium reserves, population theory, and special topics.
Pre-requisites: MATH 243, 249.
MATH 253 HUMAN RELATIONS IN THE ORGANIZATION
3.0: 3 cr. E

An examination of the theories and applications of managing human relations and the dynamics of interaction within organizations.

MATH 254 RISK AND RESERVES IN CASUALTY INSURANCE
3.0: 3 cr. E

The economics of insurance, utility functions, utility and insurance, compound distribution of aggregate claims, premiums, loss and expense reserves, loss reserving methods, known claims, IBNR claims, all incurred claims. Pre-requisite: MATH 243.
principles of ratemaking, data for ratemaking.
Pre-requisite: MATH 243.

MATH 256 ACTUARIAL ESTIMATION METHODS

3.0: 3 cr . E

Measures of mortality and morbidity, fitting parametric survival distribution, mortality assumptions, individual record formula, practical aspects of mortality table construction.
Pre-requisites: MATH 243 and MATH 249.

MATH 261 OPERATIONS RESEARCH

3.0: 3 cr . E

This course covers general linear programming, the simplex method and sensitivity analysis, duality, network models including minimum spanning trees, the shortest route problem and CPM and PERT computations as well as deterministic and non-deterministic inventory methods.

MATH 262 MATH FOR FINANCE

3.0: 3 cr . E

This course includes topics such as fractional exponents and radicals, simple interest, compound interest and compound amount, compound discount and present value, simple annuities, effective annual rate of interest, amortization and equity, and sinking funds.

MATH 264 GAME THEORY \& DECISION ANALYSIS

3.0: 3 cr. E

Matrix games, relation to linear programming; non-zero sum games, decision trees, models for groups decisions, utility theory.
Pre-requisite: PHYS 100, PHYS 102, MATH 203, MATH 261.

MATH 265 OPTIMIZATION

3.0: 3 cr . E

This course covers various methods in optimizations: Deterministic and probabilistic models. Unconstrained optimization methods: one dimensional search, gradient, Newton, and conjugate direction. Genetic algorithms. Nonlinear optimization.
Pre-requisite: MATH 261.

MATH 270 DIFFERENTIAL EQUATIONS

3.0: 3 cr. E

This course covers Ordinary Differential Equations (ODE) and Partial Differential Equations (PDE). Part I includes second order linear differential equations, higher order, and power series solutions. Part II illustrates the importance of partial differential equations in science and engineering and discusses the solution of parabolic, hyperbolic, and elliptic type problems.
Pre-requisite: MATH 200.

MATH 271 PARTIAL DIFFERENTIAL EQUATIONS

3.0: 3 cr . E

Linear Partial Differential Equations, separation of variables method, calculus of Fourier series. Closed form solutions for the homogeneous and nonhomogeneous problem: Heat equation, Wave equation, Laplace equation. The Sturm Liouville Eigenvalue problem.
Pre-requisites: MATH 202 and MATH 270.
MATH 272 DIFFERENTIAL EQUATIONS FOR APPLIED SCIENCES
3.0: 3 cr . E

This course covers first and higher order differential equations. Topics include separable and exact first order equations. Bernoulli and Euler-Cauchy equations. Undetermined coefficient, variation of parameters and power series solutions of higher order linear equations. Introduction to linear systems of equations.
Pre-requisite: MATH 203.

MATH 274 CALCULUS OF VARIATIONS

3.0: 3 cr. E

Variation of a functional, variational derivative, invariance of Euler's equation, variational problems in parametric form, the Weierstrass-Erdmann conditions, the canonical form of Euler equations, the Legendre transformation, the Hamilton-Jacobi equation, the second variation of a functional, the field of a functional, Hilbert invariant, and variational problems involving multiple integrals.
Pre-requisite: MATH 200.

MATH 280 FOUNDATIONS OF GEOMETRY

3.0: 3 cr E

Axiom systems, Euclidean geometry, parallel postulate, non-Euclidean geometry (elliptic, parabolic, and hyperbolic), affine geometry, projective geometry.
Pre-requisites: MATH 200.

MATH 281 DIFFERENTIAL GEOMETRY

3.0: 3 cr .

Curves in space, regular surfaces, tensors, the geometry of the Gauss map, normal curvature, the geometry of surfaces, Gauss-Bonnet theory.
Pre-requisite: MATH 202.

MATH 282 COMPUTATIONAL GEOMETRY I

3.0: 3 cr . E

An introduction to computer graphics. The PHIGS and GKS graphics standards. Geometrical transformation in 2D and 3D. Viewing in 3D. Projection. Representing curves and surfaces. Visible surface determination. Advanced modeling techniques (factual models, spline, Bezier). Color theory, realism, and rendering. Elimination and shading.
Pre-requisite: CSIS 202, MATH 200, 212.

MATH 290 HISTORY OF MATHEMATICS

3.0: 3 cr. E

Roots of modern mathematics in ancient Babylonia and Greece, early number systems, the development of arithmetic, geometry, algebra and analysis.

MATH 292 TECHNICAL PLATFORM COMPUTING

3.0: 3 cr . E

This course develops working knowledge of comprehensive technical platforms such as Mathematica, Matlab or Maple. Introduction to Mathematica: symbolic manipulation, numerics, graphics, word-processing aspects, typesetting and programming. Application to numerical analysis and graphics.
Pre-requisite: MATH 230.

MATH 293 MATH TOPICS REVIEW

3.0: 3 cr . E

Trignometry; Addition of trignometric functions with same frequency but different phases and amplitudes; Sketch the Graph of functions; Function of multiple variables; Integration techniques including integration by part; Derivatives of functions with single variable; Second order linear ordinary differential equation (homogeneous \& non homogeneous); Determination of algebric representation of periodic function through Fourier series; Center of mass and Moment of inertia computation; Matrix Algebra (Determinant, inverse, addition, multiplication,...) computational skills.

MATH 299 BS PROJECT

CSIS 206
Refer to the Department of Computer Science.

PHYS 211, 213

Refer to the Department of Physics.

BIOL 201, 203

Refer to the Department of Biology.

FHSC 282

Refer to the Faculty of Health Sciences.
ECON 211, 212
Refer to the Department of Economics.
ENGL 203, 204
Refer to the Division of English Language \& Literature.
CVSQ 201, 202, 203, 204
Refer to the Civilization Sequence Program.

DEPARTMENT OF PHYSICS

The Faculty of Sciences at the University of Balamand offers both an undergraduate major and a minor in Physics. The B. Sc. in Physics covers the broad fundamentals necessary for graduate study in Physics and many related fields. The minor in Physics offers the basic courses that provide a firm background to accommodate the needs of interested students.

Major in Physics:

Students must successfully complete a minimum of 90 credits of required courses provided that they satisfy the standards set by the University of Balamand and the Faculty of Sciences. Students must complete the following:

A- $\mathbf{3 6}$ credits of Physics Courses

PHYS 201, 211, 212, 213, 214, 221, 223, 231, 233, 241, 243, 245, 261, 283.

B- 21 credits of Major Required Courses

CHEM 202, 222, CSIS 200, MATH 200, 202, 211, 270.

C- $\mathbf{1 8}$ credits of University Required Courses
 ENGL203, ENGL 204, CVSQ 201, CVSQ 202, CVSQ 203, CVSQ 204.

D- $\mathbf{1 5}$ credits of Elective Courses :(included in Major and General Averages if the elective is a Physics course, otherwise in General Average only).

N.B: Premedical students might use their elective credits to select the remaining MCAT-required courses not covered by the Physics B.Sc. curriculum totaling 16 credits. (See list of elective courses for details).

Minor in Physics:

The Faculty of Sciences offers a Minor in Physics for students who successfully complete a minimum of 18 credits of Physics courses as follows:

Course Code

Course Title

Credit

PHYS 201* Instrumentation Laboratory 1
PHYS 211 Fundamentals of Physics I 3
PHYS 212 Fundamentals of Physics I Laboratory 1
PHYS 213 Fundamentals of Physics II 3
PHYS 214 Fundamentals of Physics II Laboratory 1
PHYS 241*** Electricity and Magnetism 3
And a selection of 2 courses from the following Physics courses:

PHYS 221	Classical Mechanics	3
PHYS 223	Quantum Physics	3
PHYS 231**	Thermodynamics	3

BACHELOR'S DEGREE

SEMESTER1

Course Code	Course Title	Credit
CSIS 200	Introduction to Computers \& Programming	3
ENGL 203	English Communications Skills III	3
MATH 200	Calculus I	3
MATH 211	Linear Algebra I	3
PHYS 211	Fundamentals of Physics I	3
PHYS 212	Fundamentals of Physics I Laboratory	1

SEMESTER 2

Course Code	Course Title	Credit
CHEM202	Basic Chemistry	3
ENGL 204	English Communications Skills IV	3
MATH 202	Calculus II	3
PHYS 201*	Instrumentation Laboratory	1
PHYS 213	Fundamentals of Physics II	3
PHYS 214	Fundamentals of Physics II Laboratory	1

Total 14
Course Code Course Title
CHEM 222 Analytical Chemistry I
Credit 3
CVSQ 201 Early Formation of Civilization 3
MATH 270 Differential Equations 3
PHYS $221 \quad$ Classical Mechanics 3
PHYS 241*** Electricity and Magnetism 3
Total 15
Course Code Course Title
CVSQ 202 The Religious Experience: The Sacred
Credit 3
PHYS 223 Quantum Physics 3
PHYS 231** Thermodynamics 3
PHYS 243**** Circuit Analysis I 3
Elective 3
Total 15

SEMESTER 5

Course Code	Course Title	Credit
CVSQ 203	Introduction To Modernity	
PHYS 233	Thermal \& Statistical Physics	3
PHYS 261	Special Relativity Elective (2)	3
Total		3
Course Code	Course Title	6
CVSQ 204	Contemporary Challenges in The Arab World PHYS 254	$\mathbf{1 5}$
PHYS 283	Nuclear Physics Electives (2)	Credit
Total		3
Total credits		3

List of Electives

A- Within the Physics Department:

Course Code

PHYS 235 Fluid Mechanics

Credit

3
PHYS 247 Photonics and Nonlinear Optics 3
PHYS 251 Introduction to Biophysics 3
PHYS 253 Introduction to Nanoscience 3
PHYS 263 Introduction to General Relativity 3
PHYS 271 Introduction to Solid State Physics 3
PHYS 281 Atomic and Molecular Physics 3
PHYS 285 Introduction to Particle Physics 3
PHYS 291 Computational Physics 3

B- From outside the Physics Department

i) Remaining Premedical courses:

Course Code	Course Title	Credit
BIOL 201	General Biology I	3
BIOL 202	General Biology Laboratory I	1
BIOL 203	General Biology II	3
BIOL 204	General Biology Laboratory II	1
CHEM 203	Basic Chemistry Laboratory	1
CHEM 242	Organic Chemistry I	3
CHEM 244	Organic Chemistry II	3
CHEM 245	Organic Chemistry Laboratory I	1

ii) Many courses from various other Departments at UOB

[^0]
COURSE DESCRIPTIONS

PHYS 201 INSTRUMENTATION LABORATORY (Equivalent to ELEN 201)

0.3: 1 cr . E

This laboratory provides an introduction on the use of multi-meters, oscilloscopes, function generators, power supplies and other instrumentation. Applications include solenoids, resistors, capacitors, periodic signals analysis, balanced bridge circuit, RC, RL and RLC circuits

PHYS 211 FUNDAMENTALS OF PHYSICS I

3.0: 3 cr. E

The course introduces some of the basic fundamentals of physics, including: kinematics of a particle, relative motion analysis, Newton's laws of motion, work, energy, center of mass, linear impulse and momentum, collision, torque, equilibrium, elasticity, gravity, properties of fluids, simple harmonic motion, transverse and longitudinal waves, resonance, sound waves, Doppler effect, thermal expansion, first and second laws of thermodynamics, entropy.
Pre-requisite: PHYS 100, PHYS 102, MATH 200 or 203.

PHYS 212 FUNDAMENTALS OF PHYSICS I LABORATORY

0.3: 1 cr. E

This laboratory introduces students to the types of basic apparatus used in physics. Experiments are designed to demonstrate the meaning and applications of the physical concepts included in the "Fundamental of Physics I" course.
Co-requisite: PHYS 211.

PHYS 213 FUNDAMENTALS OF PHYSICS II

3.0: 3 cr E

The course introduces some of the basic fundamentals of physics, including: electric charge, Coulomb's law, electrostatic force, electric field, electric potential, Gauss' Law, capacitors, capacitance, electric current, resistance, Ohm's law, power, emf, internal resistance, magnetic field, magnetic force, magnetic materials, alternating current, rms voltage and current, polarization, reflection, refraction, mirrors, thin lenses, interference, diffraction, photoelectric effect, blackbody radiation, Hydrogen atom, fluorescence, atomic and mass numbers, isotopes, alpha, beta and gamma decays, nuclear fission, nuclear fusion.
Pre-requisite: PHYS 100, PHYS 102, MATH 200 or 203.

PHYS 214 FUNDAMENTALS OF PHYSICS II LABORATORY

0.3: 1 cr. E

This laboratory introduces students to the types of basic apparatus used in physics. Experiments are designed to demonstrate the meaning and applications of the physical concepts included in the "Fundamental of Physics II" course.
Co-requisite: PHYS 213.

PHYS 221 CLASSICAL MECHANICS

3.0: 3 cr. E

This courses deals with the fundamental principles of Classical Mechanics. It treats particle d ynamics, the motion of systems of particles, rigid body motion, moving coordinate systems. Lagrange's equations, Hamilton's equations and small oscillations.
Pre-requisite: PHYS 211 and MATH 202.

PHYS 223 QUANTUM PHYSICS

3.0: 3 cr. E

The courses describes the development of quantum physics; waves in classical physics, wave-packets, uncertainty principle, wave functions, operators, expectation values of dynamical observables; Schrödinger equation with application to one-dimensional problems, the hydrogen atom, electrons pin, periodic table; selected topics in perturbation theory, scattering theory.
Pre-requisite: MATH 202, 270.

PHYS 231 THERMODYNAMICS (Equivalent to MECH 232)

This course introduces some basic concepts and definitions of Thermodynamics, properties of substance, heat, work, first law of Thermodynamics, Second law of Thermodynamics, entropy, reversibility and irreversibility, power and refrigeration cycles.

PHYS 233 THERMAL AND STATISTICAL PHYSICS

3.0: 3 cr . E

The laws of thermodynamics, elementary probability theory, kinetics theory of gases and Brownian motion, equilibrium, statistical mechanics of ideal systems: statistical origins of heat, temperature, entropy and equilibrium between phases.
Pre-requisite: PHYS 231.

PHYS 235 FLUID MECHANICS

3.0: 3 cr . E

The course introduces the fundamentals of fluid properties, fluid statics, kinematics, dimensional analysis and similarity, viscous and nonviscous flows, flow past immersed bodies, compressible and incompressible flows, laminar and turbulent flowsopen channel flow, turbomachinery.

PHYS 241 ELECTRICITY AND MAGNETISM (Equivalent to ELEN 223)

3.0: 3 cr . E

This course covers the governing principles and laws of charge and matter, electric fields, Biot-Savart law, Faraday's law, Gauss' law, electric potential, capacitors, dielectrics, magnetic fields, inductors, Ampère's law, paramagnetism, Maxwell's equations and electromagnetic waves.
Pre-requisite: MATH 202, 270.

PHYS 243 CIRCUIT ANALYSIS I (Equivalent to ELEN 221)

3.0: 3 cr . E

The purpose of this course is to provide the students with basic understanding of electrical circuit theory. Topics covered include fundamental definitions and laws, resistive circuit analysis, mesh and nodal analysis, RL, RC and RLC circuit analysis, DC/AC analysis, Thevenin and Norton theorems, phasor analysis. Pre-requisite: PHYS 201, MATH 200 (or MATH 203) and MATH 211.

PHYS 245 MODERN OPTICS

3.0: 3 cr . E

This course covers the fundamental principles of modern physical optics and contemporary optical systems. Topics include propagation of light, polarization, coherence, interference, diffraction, Fourier optics, absorption, scattering, dispersion, and image quality analysis. Special emphasis is placed on the instrumentation and experimental techniques used in optical studies.
Pre-requisite: MATH 202.

PHYS 247 PHOTONICS AND NONLINEAR OPTICS

3.0: 3 cr . E

The first part of the course discusses the fundamentals and applications of photonics. The theory of guided wave optics is covered, including optical modes and their dispersion in rectangular and circular waveguides. Optical wave interaction with isotropic and anisotropic media is addressed. The second part deals with the fundamentals and applications of the nonlinear interaction of radiation with matter. Its goal is to give the student a working knowledge of nonlinear effects, nonlinear materials and the applications of nonlinear optics in various technologies.
Pre-requisite: PHYS 245.

PHYS 251 INTRODUCTION TO BIOPHYSICS

3.0: 3 cr . E

This course introduces the student to a physical description of a wide range of phenomena, from molecular and cell mechanisms to the function of the human brain, to the frontiers in Photobiophysics, and bioinformatics. Topics include molecular forces in biological structures, cell organization, flow of genetic information, biological thermodynamic and kinetic (enzymatic reactions), electrostatic interactions in biology, interaction of biological molecules with light (primary processes in photosynthesis, vision).

Theory and concepts of nanomaterials will be covered in this course, including the chemistry and physics of nanomaterials. The course will also focus on major classes of nanomaterials, including: carbon nanotubes, nanostructured materials, nanowires, nanoparticles, and other nanomaterials. Applications of nanomaterials to technology areas of interest to the class will also be discussed.

PHYS 261 SPECIAL RELATIVITY

3.0: 3 cr . E

This course introduces the basic ideas and equations of Einstein's Special Theory of Relativity, new concept of spacetime, Lorentz contraction, time dilation, kinematics and "paradoxes", relativistic momentum and energy, relation between energy and matter.
Pre-requisite: PHYS 221.

PHYS 263 INTRODUCTION TO GENERAL RELATIVITY

3.0: 3 cr. E

The purpose of the course is to give a general overview of theoretical and experimental general relativity, the equivalence principle and its experimental basis, Einstein field equations; classical tests of general relativity; gravitational radiation, cosmological considerations.
Pre-requisite: PHYS 221 and 261.

PHYS 271 INTRODUCTION TO SOLID STATE PHYSICS

3.0: 3 cr . E

The course describes the basic theories of the properties of solids including electronic band structure of crystals, electrical conduction, optical properties, magnetism and superconductivity, crystal structure; lattice vibrations; thermal properties of solids; transportandothernon-equilibriumphenomenainuniformandnonun iformmaterials. Pre-requisite: PHYS 223, 233 and 241.

PHYS 281 ATOMIC AND MOLECULAR PHYSICS

3.0: 3 cr . E

SomeofthefundamentalsofPhysicsontheatomicandmolecularlevelsarecoveredinthiscourse.Thisincludesnuclear magnetic resonance, two-level quantum system, the Hydrogen atom, atomic clocks, optical clocks, fine structure of hydrogen and helium atom, nuclear moment effects, Bose-Einstein condensate, Fermionic degenerate systems. Pre-requisite: PHYS 223.

PHYS 283 NUCLEAR PHYSICS

3.0: 3 cr . E

The course gives a basic description of nuclei and elementary particles, structure of stable nuclei, radioactivity, interaction of nuclear radiation with matter, nuclear reactions, particle accelerators, nuclear instruments, fission, nuclear reactors.
Pre-requisite: PHYS 223.

PHYS 285 INTRODUCTION TO PARTICLE PHYSICS

3.0: 3 cr . E

The focus of the course is the construction of the Standard Model with emphasis on the electroweak theory. The seminal experiments that confirmed the predictions of the Standard Model is presented. The solar neutrino problem, the search for nonzero neutrino masses, and the efforts to construct the unified theory.
Pre-requisite: PHYS 223.

PHYS 291 COMPUTATIONAL PHYSICS

3.0: 3 cr . E

The course is an introduction to computationally based problem solving in physics, emphasis on understanding and applying various numerical algorithms to different types of physics problems. Topics will include chaos in mechanical systems, fractal structures, molecular dynamics and the properties of simple fluids, Monte Carlo methods, and time dependent as well as time independent problems in quantum mechanics.
Pre-requisite: PHYS 221, PHYS 223 and CSIS 200.

CHEM 202, 222
Refer to Department of Chemistry.
CVSQ 201, 202, 203, 204
Refer to Cultural Studies Program.
CSIS 200
Refer to the Department of Computer Science.
ENGL 203, 204
Refer to Department of English Language \& Literature.
MATH 200, 202, 211, 270
Refer to Department of Mathematics.

[^0]: * PHYS 201- Instrumentation Laboratory is equivalent to ELEN 201
 ** PHYS 231- Thermodynamics is equivalent to MECH 232
 *** PHYS 241- Electricity and Magnetism is equivalent to ELEN 223
 **** PHYS 243- Circuit Analysis is equivalent to ELEN 221

